These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7538012)

  • 41. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies.
    Belda E; Moya A; Bentley S; Silva FJ
    BMC Genomics; 2010 Jul; 11():449. PubMed ID: 20649993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phylogenetic Relationships of the Symbiotic Bacteria in the Aphid Sitobion avenae (Hemiptera: Aphididae).
    Alkhedir H; Karlovsky P; Mashaly AM; Vidal S
    Environ Entomol; 2015 Oct; 44(5):1358-66. PubMed ID: 26314016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial host specificity of Lucinacea endosymbionts: interspecific variation in 16S rRNA sequences.
    Durand P; Gros O
    FEMS Microbiol Lett; 1996 Jul; 140(2-3):193-8. PubMed ID: 8764482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The endosymbionts of tsetse flies: manipulating host-parasite interactions.
    Dale C; Welburn SC
    Int J Parasitol; 2001 May; 31(5-6):628-31. PubMed ID: 11334953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The rapid isolation and growth dynamics of the tsetse symbiont Sodalis glossinidius.
    Matthew CZ; Darby AC; Young SA; Hume LH; Welburn SC
    FEMS Microbiol Lett; 2005 Jul; 248(1):69-74. PubMed ID: 15961259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification in situ and phylogeny of uncultured bacterial endosymbionts.
    Amann R; Springer N; Ludwig W; Görtz HD; Schleifer KH
    Nature; 1991 May; 351(6322):161-4. PubMed ID: 1709451
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal stress responses of Sodalis glossinidius, an indigenous bacterial symbiont of hematophagous tsetse flies.
    Roma JS; D'Souza S; Somers PJ; Cabo LF; Farsin R; Aksoy S; Runyen-Janecky LJ; Weiss BL
    PLoS Negl Trop Dis; 2019 Nov; 13(11):e0007464. PubMed ID: 31738754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut.
    Geiger A; Fardeau ML; Grebaut P; Vatunga G; Josénando T; Herder S; Cuny G; Truc P; Ollivier B
    Infect Genet Evol; 2009 Dec; 9(6):1364-70. PubMed ID: 19800031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae).
    Küchler SM; Dettner K; Kehl S
    FEMS Microbiol Ecol; 2010 Aug; 73(2):408-18. PubMed ID: 20500529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secondary endosymbionts of psyllids have been acquired multiple times.
    Thao ML; Clark MA; Baumann L; Brennan EB; Moran NA; Baumann P
    Curr Microbiol; 2000 Oct; 41(4):300-4. PubMed ID: 10977900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts.
    Thao ML; Gullan PJ; Baumann P
    Appl Environ Microbiol; 2002 Jul; 68(7):3190-7. PubMed ID: 12088994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A phylogenomic study of endosymbiotic bacteria.
    Canbäck B; Tamas I; Andersson SG
    Mol Biol Evol; 2004 Jun; 21(6):1110-22. PubMed ID: 15014155
    [TBL] [Abstract][Full Text] [Related]  

  • 54. "Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness.
    Snyder AK; Rio RV
    Appl Environ Microbiol; 2015 Aug; 81(16):5375-86. PubMed ID: 26025907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic Structure of the Bacterial Endosymbiont Buchnera aphidicola from Its Host Aphid Schlechtendalia chinensis and Evolutionary Implications.
    Zhang Y; Su X; Harris AJ; Caraballo-Ortiz MA; Ren Z; Zhong Y
    Curr Microbiol; 2018 Mar; 75(3):309-315. PubMed ID: 29085996
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cospeciation of psyllids and their primary prokaryotic endosymbionts.
    Thao ML; Moran NA; Abbot P; Brennan EB; Burckhardt DH; Baumann P
    Appl Environ Microbiol; 2000 Jul; 66(7):2898-905. PubMed ID: 10877784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.
    Gruwell ME; Morse GE; Normark BB
    Mol Phylogenet Evol; 2007 Jul; 44(1):267-80. PubMed ID: 17400002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria.
    Jagoueix S; Bove JM; Garnier M
    Int J Syst Bacteriol; 1994 Jul; 44(3):379-86. PubMed ID: 7520729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of high-affinity iron acquisition homologues in the tsetse fly symbiont Sodalis glossinidius.
    Runyen-Janecky LJ; Brown AN; Ott B; Tujuba HG; Rio RV
    J Bacteriol; 2010 Jul; 192(14):3780-7. PubMed ID: 20494987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phylogenetic analysis of vertically transmitted psyllid endosymbionts (Candidatus Carsonella ruddii) based on atpAGD and rpoC: comparisons with 16S-23S rDNA-derived phylogeny.
    Thao ML; Clark MA; Burckhardt DH; Moran NA; Baumann P
    Curr Microbiol; 2001 Jun; 42(6):419-21. PubMed ID: 11381334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.