These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7538479)

  • 1. A rapid permeabilization procedure for accurate quantitative determination of beta-galactosidase activity in yeast cells.
    Kippert F
    FEMS Microbiol Lett; 1995 May; 128(2):201-6. PubMed ID: 7538479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeabilization of baker's yeast with N-lauroyl sarcosine.
    Abraham J; Bhat SG
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):799-804. PubMed ID: 18415131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilization of Kluyveromyces marxianus with mild detergent for whey lactose hydrolysis and augmentation of mixed culture.
    Yadav JS; Bezawada J; Yan S; Tyagi RD; Surampalli RY
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3207-22. PubMed ID: 24500798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruptive effects of tris and sodium lauroyl sarcosinate on the outer membrane of Pseudomonas cepacia shown by fluorescent probes.
    Anwar H; Brown MR; Britten AZ; Lambert PA
    J Gen Microbiol; 1983 Jul; 129(7):2017-20. PubMed ID: 6195304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detergent permeabilized yeast cells as the source of intracellular enzymes for estimation of biomolecules.
    Bhat N; Naina NS; Gowda LR; Bhat SG
    Enzyme Microb Technol; 1993 Sep; 15(9):796-800. PubMed ID: 7764009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ assays of fungal enzymes in cells permeabilized by osmotic shock.
    Sesták S; Farkas V
    Anal Biochem; 2001 May; 292(1):34-9. PubMed ID: 11319815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streamlined beta-galactosidase assay for analysis of recombinant yeast response to estrogens.
    Le Guével R; Pakdel F
    Biotechniques; 2001 May; 30(5):1000-4. PubMed ID: 11355334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells.
    Plovins A; Alvarez AM; Ibañez M; Molina M; Nombela C
    Appl Environ Microbiol; 1994 Dec; 60(12):4638-41. PubMed ID: 7811104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarkosyl is a good regeneration reagent for studies on vacuolar-type ATPase subunit interactions in Biacore experiments.
    Rahman S; Arai S; Saijo S; Yamato I; Murata T
    Anal Biochem; 2011 Nov; 418(2):301-3. PubMed ID: 21806959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast cell permeabilization by osmotic shock allows determination of enzymatic activities in situ.
    Crotti LB; Drgon T; Cabib E
    Anal Biochem; 2001 May; 292(1):8-16. PubMed ID: 11319811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning assay of beta-galactosidase activity.
    Li W; Zhao X; Zou S; Ma Y; Zhang K; Zhang M
    Prikl Biokhim Mikrobiol; 2012; 48(6):668-72. PubMed ID: 23330395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells.
    Chow CK; Palecek SP
    Biotechnol Prog; 2004; 20(2):449-56. PubMed ID: 15058989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic fungicidal activity of Cu(2+) and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae.
    Ogita A; Hirooka K; Yamamoto Y; Tsutsui N; Fujita K; Taniguchi M; Tanaka T
    Toxicology; 2005 Nov; 215(3):205-13. PubMed ID: 16102883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of detergents on the composition of postsynaptic densities.
    Somerville RA; Merz PA; Carp RI
    J Neurochem; 1984 Jul; 43(1):184-91. PubMed ID: 6202843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Saccharomyces cerevisiae cell-based quantitative beta-galactosidase assay compatible with robotic handling and high-throughput screening.
    de Almeida RA; Burgess D; Shema R; Motlekar N; Napper AD; Diamond SL; Pavitt GD
    Yeast; 2008 Jan; 25(1):71-6. PubMed ID: 17957822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitation of beta-galactosidase from yeast cells using a chemiluminescent substrate.
    Nevels M; Wolf H; Dobner T
    Biotechniques; 1999 Jan; 26(1):57-8. PubMed ID: 9894592
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitative immunofluorescence in single Saccharomyces cerevisiae cells.
    Eitzman PD; Hendrick JL; Srienc F
    Cytometry; 1989 Jul; 10(4):475-83. PubMed ID: 2504565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations.
    Srienc F; Campbell JL; Bailey JE
    Cytometry; 1986 Mar; 7(2):132-41. PubMed ID: 2419058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
    Presecki AV; Vasić-Racki D
    Biotechnol Lett; 2005 Dec; 27(23-24):1835-9. PubMed ID: 16328976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Final report on the safety assessment of Cocoyl Sarcosine, Lauroyl Sarcosine, Myristoyl Sarcosine, Oleoyl Sarcosine, Stearoyl Sarcosine, Sodium Cocoyl Sarcosinate, Sodium Lauroyl Sarcosinate, Sodium Myristoyl Sarcosinate, Ammonium Cocoyl Sarcosinate, and Ammonium Lauroyl Sarcosinate.
    Lanigan RS
    Int J Toxicol; 2001; 20 Suppl 1():1-14. PubMed ID: 11358107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.