BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7538946)

  • 1. Salt sensitivity and arginine toxicity in Aspergillus nidulans.
    Clement DJ; Attwell NA; Stanley MS; Clipson NJ; Hooley P; Fincham DA
    Biochem Soc Trans; 1995 Feb; 23(1):24S. PubMed ID: 7538946
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine.
    Fan CL; Miller DL; Rodwell VW
    J Biol Chem; 1972 Apr; 247(8):2283-8. PubMed ID: 5019949
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence for sltA1 as a salt-sensitive allele of the arginase gene (agaA) in the ascomycete Aspergillus nidulans.
    Clement DJ; Stanley MS; Attwell NA; Clipson NJ; Fincham DA; Hooley P
    Curr Genet; 1996 Apr; 29(5):462-7. PubMed ID: 8625426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic and neutral amino acid transport in Aspergillus nidulans.
    Piotrowska M; Stepień PP; Bartnik E; Zakrzewska E
    J Gen Microbiol; 1976 Jan; 92(1):89-96. PubMed ID: 1466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt sensitivity and arginase activity in Aspergillus nidulans.
    Attwell NA; Clement DJ; Stanley MS; Clipson NJ; Hooley P; Fincham DA
    Biochem Soc Trans; 1997 Feb; 25(1):98S. PubMed ID: 9056996
    [No Abstract]   [Full Text] [Related]  

  • 6. L-arginine influences the structure and function of arginase mRNA in Aspergillus nidulans.
    Borsuk P; Przykorska A; Blachnio K; Koper M; Pawlowicz JM; Pekala M; Weglenski P
    Biol Chem; 2007 Feb; 388(2):135-44. PubMed ID: 17261076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lysine on arginine uptake and metabolism in Aspergillus nidulans.
    Cybis J; Weglenski P
    Mol Gen Genet; 1969 Jul; 104(3):282-7. PubMed ID: 5364466
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase.
    Rynkiewicz MJ; Seaton BA
    Biochemistry; 1996 Dec; 35(50):16174-9. PubMed ID: 8973189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical arginine residue for maintaining the bacteriophage tail structure.
    Kozloff LM; Lute M; Crosby LK; Wong R; Stern B
    J Virol; 1969 Feb; 3(2):217-27. PubMed ID: 5774141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells.
    Hibbs JB; Vavrin Z; Taintor RR
    J Immunol; 1987 Jan; 138(2):550-65. PubMed ID: 2432129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans.
    Wang S; Liu X; Qian H; Zhang S; Lu L
    Appl Environ Microbiol; 2016 Jun; 82(11):3420-3430. PubMed ID: 27037124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans.
    Axelrod DE
    J Gen Microbiol; 1972 Nov; 73(1):181-4. PubMed ID: 4569577
    [No Abstract]   [Full Text] [Related]  

  • 13. Polyamine and ornithine metabolism during the germination of conidia of Aspergillus nidulans.
    Stevens L; McKinnon IM; Winther M
    Biochem J; 1976 Aug; 158(2):235-41. PubMed ID: 791270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and antifungal properties of compounds which target the alpha-aminoadipate pathway.
    Palmer DR; Balogh H; Ma G; Zhou X; Marko M; Kaminskyj SG
    Pharmazie; 2004 Feb; 59(2):93-8. PubMed ID: 15025175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Metabolic pathways of exogenous pyrimidines in Aspergillus nidulans].
    Zinchenko VV; Biriukova IV
    Mikrobiologiia; 1979; 48(1):28-32. PubMed ID: 370519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative survey of conidiation mutants in Aspergillus nidulans.
    Martinelli SD; Clutterbuck AJ
    J Gen Microbiol; 1971 Dec; 69(2):261-8. PubMed ID: 4947820
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of the oat1 gene of Penicillium chrysogenum encoding an omega-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium.
    Naranjo L; Lamas-Maceiras M; Ullán RV; Campoy S; Teijeira F; Casqueiro J; Martín JF
    Mol Genet Genomics; 2005 Oct; 274(3):283-94. PubMed ID: 16163487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of entry of L-arginine into the brain of the rat, in vivo, by L-lysine or L-ornithine.
    Baños G; Daniel PM; Pratt OE
    J Physiol; 1971; 214 Suppl():24P-25P. PubMed ID: 5575360
    [No Abstract]   [Full Text] [Related]  

  • 19. L-lysine repression of penicillin biosynthesis and the expression of penicillin biosynthesis genes acvA and ipnA in Aspergillus nidulans.
    Brakhage AA; Turner G
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):123-7. PubMed ID: 1369977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of osmotic concentration and pH on sclerotia and cleistothecia production in alkaline and fertile soil Aspergilli.
    Thakur ML
    Microbios; 1973; 7(28):215-20. PubMed ID: 4201565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.