BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7539595)

  • 1. Nitric oxide contributes to functional hyperemia in cerebellar cortex.
    Iadecola C; Li J; Ebner TJ; Xu X
    Am J Physiol; 1995 May; 268(5 Pt 2):R1153-62. PubMed ID: 7539595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers.
    Yang G; Iadecola C
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1155-61. PubMed ID: 9140015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex.
    Li J; Iadecola C
    Neuropharmacology; 1994 Nov; 33(11):1453-61. PubMed ID: 7532829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats.
    Yang G; Chen G; Ebner TJ; Iadecola C
    Am J Physiol; 1999 Dec; 277(6):R1760-70. PubMed ID: 10600924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7-Nitroindazole attenuates vasodilation from cerebellar parallel fiber stimulation but not acetylcholine.
    Iadecola C; Yang G; Xu S
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R914-9. PubMed ID: 8967422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar vascular and synaptic responses in normal mice and in transgenics with Purkinje cell dysfunction.
    Yang G; Feddersen RM; Zhang F; Clark HB; Beitz AJ; Iadecola C
    Am J Physiol; 1998 Feb; 274(2):R529-40. PubMed ID: 9486314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP.
    Yang G; Iadecola C
    Stroke; 1998 Feb; 29(2):499-507; discussion 507-8. PubMed ID: 9472896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide.
    Zhang F; Xu S; Iadecola C
    Neuroscience; 1995 Dec; 69(4):1195-204. PubMed ID: 8848107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex.
    Iadecola C; Li J; Xu S; Yang G
    J Neurophysiol; 1996 Feb; 75(2):940-50. PubMed ID: 8714666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate microinjections in cerebellar cortex reproduce cerebrovascular effects of parallel fiber stimulation.
    Yang G; Iadecola C
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1568-75. PubMed ID: 8997354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide participates in the cerebrovasodilation elicited from cerebellar fastigial nucleus.
    Iadecola C
    Am J Physiol; 1992 Nov; 263(5 Pt 2):R1156-61. PubMed ID: 1443234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine.
    Iadecola C; Zhang F
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R990-1001. PubMed ID: 8897992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.
    Akgören N; Fabricius M; Lauritzen M
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5903-7. PubMed ID: 7517038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide synthase-containing vascular nerves in cerebrovasodilation elicited from cerebellum.
    Iadecola C; Zhang F; Xu X
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R738-46. PubMed ID: 7682793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex.
    Iadecola C; Yang G; Ebner TJ; Chen G
    J Neurophysiol; 1997 Aug; 78(2):651-9. PubMed ID: 9307102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase.
    Yang G; Zhang Y; Ross ME; Iadecola C
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H298-304. PubMed ID: 12623792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats.
    Fabricius M; Lauritzen M
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1457-64. PubMed ID: 8184923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoflurane-induced cerebral hyperemia in neuronal nitric oxide synthase gene deficient mice.
    Okamoto H; Meng W; Ma J; Ayata C; Roman RJ; Bosnjak ZJ; Kampine JP; Huang PL; Moskowitz MA; Hudetz AG
    Anesthesiology; 1997 Apr; 86(4):875-84. PubMed ID: 9105232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependency of cortical functional hyperemia to forepaw stimulation on epoxygenase and nitric oxide synthase activities in rats.
    Peng X; Zhang C; Alkayed NJ; Harder DR; Koehler RC
    J Cereb Blood Flow Metab; 2004 May; 24(5):509-17. PubMed ID: 15129182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthase is critical in mediating basal forebrain regulation of cortical cerebral circulation.
    Raszkiewicz JL; Linville DG; Kerwin JF; Wagenaar F; Arneric SP
    J Neurosci Res; 1992 Sep; 33(1):129-35. PubMed ID: 1280688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.