These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 7539708)

  • 21. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection.
    Gao G; Orlova M; Georgiadis MM; Hendrickson WA; Goff SP
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):407-11. PubMed ID: 9012795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of processive nucleic acid polymerases and nucleases.
    Chou KC; Kézdy FJ; Reusser F
    Anal Biochem; 1994 Sep; 221(2):217-30. PubMed ID: 7529005
    [No Abstract]   [Full Text] [Related]  

  • 23. The influence of a double-stranded hindrance on DNA synthesis performed by DNA polymerase alpha, T4 DNA polymerase, DNA polymerase I (Klenow fragment) and AMV reverse transcriptase.
    Scamrov AV; Beabealashvilli RS
    FEBS Lett; 1988 Feb; 228(1):144-8. PubMed ID: 2449362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymerase structures and function: variations on a theme?
    Joyce CM; Steitz TA
    J Bacteriol; 1995 Nov; 177(22):6321-9. PubMed ID: 7592405
    [No Abstract]   [Full Text] [Related]  

  • 25. Polymerase activities and RNA structures in the atomic force microscope.
    Hansma HG; Golan R; Hsieh W; Daubendiek SL; Kool ET
    J Struct Biol; 1999 Oct; 127(3):240-7. PubMed ID: 10544049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computer-assisted analysis of conserved residues in the three-dimensional structures of the polymerase domains of Escherichia coli DNA polymerase I and HIV-1 reverse transcriptase.
    Yadav PN; Yadav JS; Arnold E; Modak MJ
    J Biol Chem; 1994 Jan; 269(1):716-20. PubMed ID: 7506263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viral polymerases.
    Choi KH
    Adv Exp Med Biol; 2012; 726():267-304. PubMed ID: 22297518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The kinetics and processivity of nucleic acid polymerases.
    McClure WR; Chow Y
    Methods Enzymol; 1980; 64():277-97. PubMed ID: 6990186
    [No Abstract]   [Full Text] [Related]  

  • 29. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase.
    Jackson LN; Chim N; Shi C; Chaput JC
    Nucleic Acids Res; 2019 Jul; 47(13):6973-6983. PubMed ID: 31170294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.
    Yang W; Lee JY; Nowotny M
    Mol Cell; 2006 Apr; 22(1):5-13. PubMed ID: 16600865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and function of 2:1 DNA polymerase.DNA complexes.
    Tang KH; Tsai MD
    J Cell Physiol; 2008 Aug; 216(2):315-20. PubMed ID: 18393274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases.
    McAllister WT; Raskin CA
    Mol Microbiol; 1993 Oct; 10(1):1-6. PubMed ID: 7526118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.
    Dunn MR; Otto C; Fenton KE; Chaput JC
    ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and immunological characterization of cellular DNA polymerases alpha, beta and gamma, and a reverse transcriptase from human melanoma tissue.
    Chandra P; Balikcioglu S; Mildner B
    Cell Mol Biol Incl Cyto Enzymol; 1981; 27(2-3):239-51. PubMed ID: 6170436
    [No Abstract]   [Full Text] [Related]  

  • 37. Toward safe genetically modified organisms through the chemical diversification of nucleic acids.
    Herdewijn P; Marlière P
    Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Substrate properties of dinucleoside 5',5"-oligophosphates in the reactions catalyzed by HIV reverse transcriptase, E. coli DNA polymerase I, and E. coli RNA polymerase].
    Bioorg Khim; 2005; 31(1):54-64. PubMed ID: 15787214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Family A and family B DNA polymerases are structurally related: evolutionary implications.
    Zhu W; Ito J
    Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns.
    Horlacher J; Hottiger M; Podust VN; Hübscher U; Benner SA
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6329-33. PubMed ID: 7541538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.