These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 7540054)
1. The conformational analysis of peptides using Fourier transform IR spectroscopy. Haris PI; Chapman D Biopolymers; 1995; 37(4):251-63. PubMed ID: 7540054 [TBL] [Abstract][Full Text] [Related]
2. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
3. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Hirsh DJ; Hammer J; Maloy WL; Blazyk J; Schaefer J Biochemistry; 1996 Oct; 35(39):12733-41. PubMed ID: 8841117 [TBL] [Abstract][Full Text] [Related]
4. Effect of membrane mimicking environment on the conformation of a pore-forming (xSxG)6 peptide. Thundimadathil J; Roeske RW; Guo L Biopolymers; 2006; 84(3):317-28. PubMed ID: 16463358 [TBL] [Abstract][Full Text] [Related]
5. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers. Chung LA; Thompson TE Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189 [TBL] [Abstract][Full Text] [Related]
6. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers. Biron E; Voyer N; Meillon JC; Cormier ME; Auger M Biopolymers; 2000; 55(5):364-72. PubMed ID: 11241211 [TBL] [Abstract][Full Text] [Related]
7. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study. Menikh A; Saleh MT; Gariépy J; Boggs JM Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319 [TBL] [Abstract][Full Text] [Related]
8. Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase. Vinchurkar MS; Chen KH; Yu SS; Kuo SJ; Chiu HC; Chien SH; Chan SI Biochemistry; 2004 Oct; 43(42):13283-92. PubMed ID: 15491135 [TBL] [Abstract][Full Text] [Related]
9. A synthetic peptide forms voltage-gated porin-like ion channels in lipid bilayer membranes. Thundimadathil J; Roeske RW; Guo L Biochem Biophys Res Commun; 2005 May; 330(2):585-90. PubMed ID: 15796923 [TBL] [Abstract][Full Text] [Related]
10. Attenuated total reflection IR spectroscopy as a tool to investigate the structure, orientation and tertiary structure changes in peptides and membrane proteins. Vigano C; Manciu L; Buyse F; Goormaghtigh E; Ruysschaert JM Biopolymers; 2000; 55(5):373-80. PubMed ID: 11241212 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Tatulian SA Methods Mol Biol; 2013; 974():177-218. PubMed ID: 23404277 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics. Haris PI; Molle G; Duclohier H Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266 [TBL] [Abstract][Full Text] [Related]
13. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
14. Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes. Kouzayha A; Nasir MN; Buchet R; Wattraint O; Sarazin C; Besson F J Phys Chem B; 2009 May; 113(19):7012-9. PubMed ID: 19419221 [TBL] [Abstract][Full Text] [Related]
15. Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? Jean-François F; Castano S; Desbat B; Odaert B; Roux M; Metz-Boutigue MH; Dufourc EJ Biochemistry; 2008 Jun; 47(24):6394-402. PubMed ID: 18500827 [TBL] [Abstract][Full Text] [Related]
16. Structural model of the phospholamban ion channel complex in phospholipid membranes. Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243 [TBL] [Abstract][Full Text] [Related]
17. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes. Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634 [TBL] [Abstract][Full Text] [Related]
18. Aggregation and porin-like channel activity of a beta sheet peptide. Thundimadathil J; Roeske RW; Jiang HY; Guo L Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403 [TBL] [Abstract][Full Text] [Related]
19. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
20. Secondary structure of sea anemone cytolysins in soluble and membrane bound form by infrared spectroscopy. Menestrina G; Cabiaux V; Tejuca M Biochem Biophys Res Commun; 1999 Jan; 254(1):174-80. PubMed ID: 9920753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]