These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 7540267)
1. Lesions to terminals of noradrenergic locus coeruleus neurones do not inhibit opiate withdrawal behaviour in rats. Chieng B; Christie MJ Neurosci Lett; 1995 Feb; 186(1):37-40. PubMed ID: 7540267 [TBL] [Abstract][Full Text] [Related]
2. Total neurochemical lesion of noradrenergic neurons of the locus ceruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal. Caillé S; Espejo EF; Reneric JP; Cador M; Koob GF; Stinus L J Pharmacol Exp Ther; 1999 Aug; 290(2):881-92. PubMed ID: 10411605 [TBL] [Abstract][Full Text] [Related]
3. Effects of the cell type-specific ablation of the cAMP-responsive transcription factor in noradrenergic neurons on locus coeruleus firing and withdrawal behavior after chronic exposure to morphine. Parlato R; Cruz H; Otto C; Murtra P; Parkitna JR; Martin M; Bura SA; Begus-Nahrmann Y; von Bohlen und Halbach O; Maldonado R; Schütz G; Lüscher C J Neurochem; 2010 Nov; 115(3):563-73. PubMed ID: 20367754 [TBL] [Abstract][Full Text] [Related]
4. Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? Fritschy JM; Grzanna R Prog Brain Res; 1991; 88():257-68. PubMed ID: 1726027 [TBL] [Abstract][Full Text] [Related]
5. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Fritschy JM; Grzanna R Neuroscience; 1989; 30(1):181-97. PubMed ID: 2747911 [TBL] [Abstract][Full Text] [Related]
6. Local opiate withdrawal in locus coeruleus neurons in vitro. Ivanov A; Aston-Jones G J Neurophysiol; 2001 Jun; 85(6):2388-97. PubMed ID: 11387385 [TBL] [Abstract][Full Text] [Related]
7. Local opiate withdrawal in locus coeruleus in vivo. Aston-Jones G; Hirata H; Akaoka H Brain Res; 1997 Aug; 765(2):331-6. PubMed ID: 9313908 [TBL] [Abstract][Full Text] [Related]
8. Neuroprotection by R(-)-deprenyl and N-2-hexyl-N-methylpropargylamine on DSP-4, a neurotoxin, induced degeneration of noradrenergic neurons in the rat locus coeruleus. Zhang X; Zuo DM; Yu PH Neurosci Lett; 1995 Feb; 186(1):45-8. PubMed ID: 7540268 [TBL] [Abstract][Full Text] [Related]
9. Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson's disease. Srinivasan J; Schmidt WJ Behav Brain Res; 2004 May; 151(1-2):191-9. PubMed ID: 15084435 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Szot P; Miguelez C; White SS; Franklin A; Sikkema C; Wilkinson CW; Ugedo L; Raskind MA Neuroscience; 2010 Mar; 166(1):279-91. PubMed ID: 20045445 [TBL] [Abstract][Full Text] [Related]
11. DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Ross SB; Stenfors C Neurotox Res; 2015 Jan; 27(1):15-30. PubMed ID: 24964753 [TBL] [Abstract][Full Text] [Related]
12. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) has differential efficacy for causing central noradrenergic lesions in two different rat strains: comparison between Long-Evans and Sprague-Dawley rats. Schuerger RJ; Balaban CD J Neurosci Methods; 1995 May; 58(1-2):95-101. PubMed ID: 7475238 [TBL] [Abstract][Full Text] [Related]
13. Involvement of locus coeruleus projections in opiate withdrawal but not in opiate tolerance in mice. Dossin O; Hanoun N; Zajac JM Eur J Pharmacol; 1996 Jul; 308(3):271-4. PubMed ID: 8858297 [TBL] [Abstract][Full Text] [Related]
14. Locus coeruleus neurons from morphine-treated rats do not show opiate-withdrawal hyperactivity in vitro. Bell JA; Grant SJ Brain Res; 1998 Mar; 788(1-2):237-44. PubMed ID: 9555033 [TBL] [Abstract][Full Text] [Related]
15. Possible involvement of the locus coeruleus in inhibition by prostanoid EP(3) receptor-selective agonists of morphine withdrawal syndrome in rats. Nakagawa T; Masuda T; Watanabe T; Minami M; Satoh M Eur J Pharmacol; 2000 Mar; 390(3):257-66. PubMed ID: 10708732 [TBL] [Abstract][Full Text] [Related]
16. Nimodipine reduction of naltrexone-precipitated locus coeruleus activation and abstinence behavior in morphine-dependent rats. Krystal JH; Compere S; Nestler EJ; Rasmussen K Physiol Behav; 1996; 59(4-5):863-6. PubMed ID: 8778878 [TBL] [Abstract][Full Text] [Related]
17. Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Chieng B; Keay KA; Christie MJ Neurosci Lett; 1995 Jan; 183(1-2):79-82. PubMed ID: 7746492 [TBL] [Abstract][Full Text] [Related]
18. Sleep increase after immobilization stress: role of the noradrenergic locus coeruleus system in the rat. Gonzalez MM; Debilly G; Valatx JL; Jouvet M Neurosci Lett; 1995 Dec; 202(1-2):5-8. PubMed ID: 8787817 [TBL] [Abstract][Full Text] [Related]
20. Restoration of ascending noradrenergic projections by residual locus coeruleus neurons: compensatory response to neurotoxin-induced cell death in the adult rat brain. Fritschy JM; Grzanna R J Comp Neurol; 1992 Jul; 321(3):421-41. PubMed ID: 1506478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]