These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 7540821)
1. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Babu-Khan S; Yeo TC; Martin WL; Duron MR; Rogers RD; Goldstein AH Appl Environ Microbiol; 1995 Mar; 61(3):972-8. PubMed ID: 7540821 [TBL] [Abstract][Full Text] [Related]
2. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Liu ST; Lee LY; Tai CY; Hung CH; Chang YS; Wolfram JH; Rogers R; Goldstein AH J Bacteriol; 1992 Sep; 174(18):5814-9. PubMed ID: 1325965 [TBL] [Abstract][Full Text] [Related]
3. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Kim CH; Han SH; Kim KY; Cho BH; Kim YH; Koo BS; Kim YC Curr Microbiol; 2003 Dec; 47(6):457-61. PubMed ID: 14756528 [TBL] [Abstract][Full Text] [Related]
4. Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. Kim KY; Jordan D; Krishnan HB FEMS Microbiol Lett; 1998 Feb; 159(1):121-7. PubMed ID: 9485602 [TBL] [Abstract][Full Text] [Related]
5. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. Krishnaraj PU; Goldstein AH FEMS Microbiol Lett; 2001 Dec; 205(2):215-20. PubMed ID: 11750805 [TBL] [Abstract][Full Text] [Related]
6. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Goldstein A; Lester T; Brown J Biochim Biophys Acta; 2003 Apr; 1647(1-2):266-71. PubMed ID: 12686144 [TBL] [Abstract][Full Text] [Related]
7. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004 [TBL] [Abstract][Full Text] [Related]
8. The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Hayashi S; Abe M; Kimoto M; Furukawa S; Nakazawa T Microbiol Immunol; 2000; 44(1):41-50. PubMed ID: 10711598 [TBL] [Abstract][Full Text] [Related]
9. The gntP gene of Escherichia coli involved in gluconate uptake. Klemm P; Tong S; Nielsen H; Conway T J Bacteriol; 1996 Jan; 178(1):61-7. PubMed ID: 8550444 [TBL] [Abstract][Full Text] [Related]
10. The fimA locus of Streptococcus parasanguis encodes an ATP-binding membrane transport system. Fenno JC; Shaikh A; Spatafora G; Fives-Taylor P Mol Microbiol; 1995 Mar; 15(5):849-63. PubMed ID: 7596287 [TBL] [Abstract][Full Text] [Related]
11. Cloning and nucleotide sequence comparison of the groE operon of Pseudomonas aeruginosa and Burkholderia cepacia. Jensen P; Fomsgaard A; Høiby N; Hindersson P APMIS; 1995 Feb; 103(2):113-23. PubMed ID: 7538307 [TBL] [Abstract][Full Text] [Related]
12. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. Keuntje B; Masepohl B; Klipp W J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417 [TBL] [Abstract][Full Text] [Related]
13. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Zhao K; Penttinen P; Zhang X; Ao X; Liu M; Yu X; Chen Q Microbiol Res; 2014 Jan; 169(1):76-82. PubMed ID: 23932330 [TBL] [Abstract][Full Text] [Related]
14. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Toyama H; Chistoserdova L; Lidstrom ME Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():595-602. PubMed ID: 9043136 [TBL] [Abstract][Full Text] [Related]
15. Cloning and expression of a novel esterase gene cpoA from Burkholderia cepacia. Kim CH; Lee JH; Heo JH; Kwon OS; Kang HA; Rhee SK J Appl Microbiol; 2004; 96(6):1306-16. PubMed ID: 15139923 [TBL] [Abstract][Full Text] [Related]
16. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli. Pi J; Wookey PJ; Pittard AJ J Bacteriol; 1991 Jun; 173(12):3622-9. PubMed ID: 1711024 [TBL] [Abstract][Full Text] [Related]
17. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. Yum DY; Lee YP; Pan JG J Bacteriol; 1997 Nov; 179(21):6566-72. PubMed ID: 9352901 [TBL] [Abstract][Full Text] [Related]
18. The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system. Porco A; Alonso G; Istúriz T J Basic Microbiol; 1998; 38(5-6):395-404. PubMed ID: 9871335 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of a cryptic haloacid dehalogenase from Burkholderia cepacia MBA4. Tsang JS; Sam L J Bacteriol; 1999 Oct; 181(19):6003-9. PubMed ID: 10498712 [TBL] [Abstract][Full Text] [Related]
20. Cloning and expression of the major porin protein gene opcP of Burkholderia (formerly Pseudomonas) cepacia in Escherichia coli. Tsujimoto H; Gotoh N; Yamagishi J; Oyamada Y; Nishino T Gene; 1997 Feb; 186(1):113-8. PubMed ID: 9047353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]