These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7540906)
1. Comparative modeling of the three-dimensional structure of type II antifreeze protein. Sönnichsen FD; Sykes BD; Davies PL Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906 [TBL] [Abstract][Full Text] [Related]
2. Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin. Ewart KV; Fletcher GL Mol Mar Biol Biotechnol; 1993 Feb; 2(1):20-7. PubMed ID: 8364686 [TBL] [Abstract][Full Text] [Related]
3. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729 [TBL] [Abstract][Full Text] [Related]
4. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice. Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594 [TBL] [Abstract][Full Text] [Related]
5. The solution structure of type II antifreeze protein reveals a new member of the lectin family. Gronwald W; Loewen MC; Lix B; Daugulis AJ; Sönnichsen FD; Davies PL; Sykes BD Biochemistry; 1998 Apr; 37(14):4712-21. PubMed ID: 9537986 [TBL] [Abstract][Full Text] [Related]
6. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin. Loewen MC; Gronwald W; Sönnichsen FD; Sykes BD; Davies PL Biochemistry; 1998 Dec; 37(51):17745-53. PubMed ID: 9922140 [TBL] [Abstract][Full Text] [Related]
7. A template for generation and comparison of three-dimensional selectin models. Bajorath J; Aruffo A Biochem Biophys Res Commun; 1995 Nov; 216(3):1018-23. PubMed ID: 7488174 [TBL] [Abstract][Full Text] [Related]
8. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
9. Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Li N; Chibber BA; Castellino FJ; Duman JG Biochemistry; 1998 May; 37(18):6343-50. PubMed ID: 9572849 [TBL] [Abstract][Full Text] [Related]
10. Hyperactive antifreeze protein from fish contains multiple ice-binding sites. Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of human lithostathine, the pancreatic inhibitor of stone formation. Bertrand JA; Pignol D; Bernard JP; Verdier JM; Dagorn JC; Fontecilla-Camps JC EMBO J; 1996 Jun; 15(11):2678-84. PubMed ID: 8654365 [TBL] [Abstract][Full Text] [Related]
12. Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells. Duncker BP; Gauthier SY; Davies PL Biochem Biophys Res Commun; 1994 Sep; 203(3):1851-7. PubMed ID: 7945337 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 A: implication of central loop swapping based on deletion in the linker region. Mizuno H; Fujimoto Z; Koizumi M; Kano H; Atoda H; Morita T J Mol Biol; 1999 May; 289(1):103-12. PubMed ID: 10339409 [TBL] [Abstract][Full Text] [Related]
14. Structure and function of the epidermal growth factor domain of P-selectin. Freedman SJ; Sanford DG; Bachovchin WW; Furie BC; Baleja JD; Furie B Biochemistry; 1996 Oct; 35(43):13733-44. PubMed ID: 8901515 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for the binding of a globular antifreeze protein to ice. Jia Z; DeLuca CI; Chao H; Davies PL Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. Meier M; Bider MD; Malashkevich VN; Spiess M; Burkhard P J Mol Biol; 2000 Jul; 300(4):857-65. PubMed ID: 10891274 [TBL] [Abstract][Full Text] [Related]
17. Molecular recognition and binding of thermal hysteresis proteins to ice. Madura JD; Baran K; Wierzbicki A J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254 [TBL] [Abstract][Full Text] [Related]
18. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
19. Structure-based modeling of the ligand binding domain of the human cell surface receptor CD23 and comparison of two independently derived molecular models. Bajorath J; Aruffo A Protein Sci; 1996 Feb; 5(2):240-7. PubMed ID: 8745401 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit. Hammarström A; Berndt KD; Sillard R; Adermann K; Otting G Biochemistry; 1996 Oct; 35(39):12723-32. PubMed ID: 8841116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]