These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7540906)
21. The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Chatwell L; Holla A; Kaufer BB; Skerra A Mol Immunol; 2008 Apr; 45(7):1981-94. PubMed ID: 18061677 [TBL] [Abstract][Full Text] [Related]
22. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Liou YC; Tocilj A; Davies PL; Jia Z Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536 [TBL] [Abstract][Full Text] [Related]
24. Crystallization and preliminary crystallographic study of human lithostathine. Pignol D; Bertrand JA; Bernard JP; Verdier JM; Dagorn JC; Fontecilla-Camps JC Proteins; 1995 Dec; 23(4):604-6. PubMed ID: 8749859 [TBL] [Abstract][Full Text] [Related]
25. NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. Gronwald W; Chao H; Reddy DV; Davies PL; Sykes BD; Sönnichsen FD Biochemistry; 1996 Dec; 35(51):16698-704. PubMed ID: 8988006 [TBL] [Abstract][Full Text] [Related]
26. Solution structure of a recombinant type I sculpin antifreeze protein. Kwan AH; Fairley K; Anderberg PI; Liew CW; Harding MM; Mackay JP Biochemistry; 2005 Feb; 44(6):1980-8. PubMed ID: 15697223 [TBL] [Abstract][Full Text] [Related]
27. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
28. Structure-function inferences based on molecular modeling, sequence-based methods and biological data analysis of snake venom lectins. Abreu PA; Albuquerque MG; Rodrigues CR; Castro HC Toxicon; 2006 Nov; 48(6):690-701. PubMed ID: 17046438 [TBL] [Abstract][Full Text] [Related]
29. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. Ng NF; Hew CL J Biol Chem; 1992 Aug; 267(23):16069-75. PubMed ID: 1644794 [TBL] [Abstract][Full Text] [Related]
30. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
31. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Sicheri F; Yang DS Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940 [TBL] [Abstract][Full Text] [Related]
32. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537 [TBL] [Abstract][Full Text] [Related]
33. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
34. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Liou YC; Thibault P; Walker VK; Davies PL; Graham LA Biochemistry; 1999 Aug; 38(35):11415-24. PubMed ID: 10471292 [TBL] [Abstract][Full Text] [Related]
35. Structural and functional study of an Anemonia elastase inhibitor, a "nonclassical" Kazal-type inhibitor from Anemonia sulcata. Hemmi H; Kumazaki T; Yoshizawa-Kumagaye K; Nishiuchi Y; Yoshida T; Ohkubo T; Kobayashi Y Biochemistry; 2005 Jul; 44(28):9626-36. PubMed ID: 16008348 [TBL] [Abstract][Full Text] [Related]
36. Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein. Chao H; Davies PL; Sykes BD; Sönnichsen FD Protein Sci; 1993 Sep; 2(9):1411-28. PubMed ID: 8401227 [TBL] [Abstract][Full Text] [Related]
37. GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. Xu Y; Cheah E; Carr PD; van Heeswijk WC; Westerhoff HV; Vasudevan SG; Ollis DL J Mol Biol; 1998 Sep; 282(1):149-65. PubMed ID: 9733647 [TBL] [Abstract][Full Text] [Related]
38. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146 [TBL] [Abstract][Full Text] [Related]
39. Lateral transfer of a lectin-like antifreeze protein gene in fishes. Graham LA; Lougheed SC; Ewart KV; Davies PL PLoS One; 2008 Jul; 3(7):e2616. PubMed ID: 18612417 [TBL] [Abstract][Full Text] [Related]
40. Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. Hoffman RC; Jennings LL; Tsigelny I; Comoletti D; Flynn RE; Sudhof TC; Taylor P Biochemistry; 2004 Feb; 43(6):1496-506. PubMed ID: 14769026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]