BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7541232)

  • 1. Determination of the interactions between lectins and glycoproteins by surface plasmon resonance.
    Okazaki I; Hasegawa Y; Shinohara Y; Kamasaki T; Bhikhabhai R
    J Mol Recognit; 1995; 8(1-2):95-9. PubMed ID: 7541232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a biosensor based on surface plasmon resonance and biotinyl glycans for analysis of sugar binding specificities of lectins.
    Shinohara Y; Sota H; Kim F; Shimizu M; Gotoh M; Tosu M; Hasegawa Y
    J Biochem; 1995 May; 117(5):1076-82. PubMed ID: 8586622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of glycoprotein oligosaccharides using surface plasmon resonance.
    Hutchinson AM
    Anal Biochem; 1994 Aug; 220(2):303-7. PubMed ID: 7526737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance.
    Shinohara Y; Kim F; Shimizu M; Goto M; Tosu M; Hasegawa Y
    Eur J Biochem; 1994 Jul; 223(1):189-94. PubMed ID: 7518391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and characterization of oligosaccharides in column effluents using surface plasmon resonance.
    Blikstad I; Fägerstam LG; Bhikhabhai R; Lindblom H
    Anal Biochem; 1996 Jan; 233(1):42-9. PubMed ID: 8789145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex carbohydrate specificity of lectin from fruiting body of Ganoderma lucidum. A surface plasmon resonance study.
    Thakur A; Pal L; Ahmad A; Khan MI
    IUBMB Life; 2007 Dec; 59(12):758-64. PubMed ID: 17917934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance.
    Haseley SR; Talaga P; Kamerling JP; Vliegenthart JF
    Anal Biochem; 1999 Oct; 274(2):203-10. PubMed ID: 10527517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy.
    Dettmann W; Grandbois M; André S; Benoit M; Wehle AK; Kaltner H; Gabius HJ; Gaub HE
    Arch Biochem Biophys; 2000 Nov; 383(2):157-70. PubMed ID: 11185549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of carbohydrates binding to lectins by using surface plasmon resonance in combination with HPLC profiling.
    Gutiérrez Gallego R; Haseley SR; van Miegem VF; Vliegenthart JF; Kamerling JP
    Glycobiology; 2004 May; 14(5):373-86. PubMed ID: 14736727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of glycophorin A with lectins as measured by surface plasmon resonance (SPR).
    Krotkiewska B; Pasek M; Krotkiewski H
    Acta Biochim Pol; 2002; 49(2):481-90. PubMed ID: 12362990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial-filling affinity capillary electrophoresis of glycoprotein oligosaccharides derivatized with 8-aminopyrene-1,3,6-trisulfonic acid.
    Yamamoto S; Shinohara C; Fukushima E; Kakehi K; Hayakawa T; Suzuki S
    J Chromatogr A; 2011 Jul; 1218(29):4772-8. PubMed ID: 21665216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors.
    Maljaars CE; de Souza AC; Halkes KM; Upton PJ; Reeman SM; André S; Gabius HJ; McDonnell MB; Kamerling JP
    Biosens Bioelectron; 2008 Sep; 24(1):60-5. PubMed ID: 18455919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and reliable method for the detection of sialylation in complex/hybrid-type carbohydrate chains of glycoproteins by mixed lectins.
    Natsuki J; Machida M
    Biotechnol Bioeng; 2006 Feb; 93(2):225-30. PubMed ID: 16196055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and cDNA cloning of monomeric lectins that correspond to the B-Chain of a type 2 ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana).
    Rojo MA; Kaku H; Ishii-Minami N; Minami E; Yato M; Hisajima S; Yamaguchi T; Shibuya N
    J Biochem; 2004 Apr; 135(4):509-16. PubMed ID: 15115776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins.
    Safina G; Duran IuB; Alasel M; Danielsson B
    Talanta; 2011 Jun; 84(5):1284-90. PubMed ID: 21641439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a lectin from endophytic fungus Fusarium solani having complex sugar specificity.
    Khan F; Ahmad A; Khan MI
    Arch Biochem Biophys; 2007 Jan; 457(2):243-51. PubMed ID: 17118333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of mistletoe toxic lectin-I with sialoglycoproteins.
    Wu AM; Song SC; Hwang PY; Wu JH; Pfüller U
    Biochem Biophys Res Commun; 1995 Sep; 214(2):396-402. PubMed ID: 7545902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of Ricinus communis agglutinin affinity adsorbents using polymeric supports.
    Cartellieri S; Helmholz H; Niemeyer B
    Anal Biochem; 2001 Aug; 295(1):66-75. PubMed ID: 11476546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of glycoprotein-lectin interactions using quartz crystal microbalance.
    Yakovleva ME; Safina GR; Danielsson B
    Anal Chim Acta; 2010 May; 668(1):80-5. PubMed ID: 20457306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins.
    Kullolli M; Hancock WS; Hincapie M
    J Sep Sci; 2008 Aug; 31(14):2733-9. PubMed ID: 18693314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.