These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 7541340)
1. The toxicity of substituted phenols in the nitrification inhibition test and luminescent bacteria test. Strotmann UJ; Eglsäer H Ecotoxicol Environ Saf; 1995 Apr; 30(3):269-73. PubMed ID: 7541340 [TBL] [Abstract][Full Text] [Related]
2. The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium. Loffhagen N; Härtig C; Babel W Ecotoxicol Environ Saf; 1997 Apr; 36(3):269-74. PubMed ID: 9143455 [TBL] [Abstract][Full Text] [Related]
4. [Quenching of the luminescence of phosphorescent bacteria as a test for assessing the toxicity of the phenol components of sewage]. Gil' TA; Balaian AE; Stom DI Mikrobiologiia; 1983; 52(6):1014-6. PubMed ID: 6608047 [TBL] [Abstract][Full Text] [Related]
5. Mutants of luminous bacteria selected for bioluminescent toxicity tests. Wagner A; Winkler U; Lümmen P J Biolumin Chemilumin; 1989 Jul; 4(1):342-5. PubMed ID: 2801221 [TBL] [Abstract][Full Text] [Related]
6. Toxicity assessment of 255 chemicals to pure cultured nitrifying bacteria using biosensor. Tanaka Y; Taguchi K; Utsumi H Water Sci Technol; 2002; 46(11-12):331-5. PubMed ID: 12523774 [TBL] [Abstract][Full Text] [Related]
7. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Parvez S; Venkataraman C; Mukherji S Environ Int; 2006 Feb; 32(2):265-8. PubMed ID: 16188318 [TBL] [Abstract][Full Text] [Related]
8. Joint toxicity evaluation and QSAR modeling of aromatic amines and phenols to bacteria. Lu GH; Wang C; Wang PF; Chen ZY Bull Environ Contam Toxicol; 2009 Jul; 83(1):8-14. PubMed ID: 19308299 [TBL] [Abstract][Full Text] [Related]
9. Standardized tests fail to assess the effects of antibiotics on environmental bacteria. Kümmerer K; Alexy R; Hüttig J; Schöll A Water Res; 2004 Apr; 38(8):2111-6. PubMed ID: 15087192 [TBL] [Abstract][Full Text] [Related]
10. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test. Bogaerts P; Bohatier J; Bonnemoy F Ecotoxicol Environ Saf; 2001 Jul; 49(3):293-301. PubMed ID: 11440483 [TBL] [Abstract][Full Text] [Related]
11. A novel continuous toxicity test system using a luminously modified freshwater bacterium. Cho JC; Park KJ; Ihm HS; Park JE; Kim SY; Kang I; Lee KH; Jahng D; Lee DH; Kim SJ Biosens Bioelectron; 2004 Sep; 20(2):338-44. PubMed ID: 15308239 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Gellert G Ecotoxicol Environ Saf; 2000 Jan; 45(1):87-91. PubMed ID: 10677271 [TBL] [Abstract][Full Text] [Related]
13. Intra-laboratory evaluation of Microbial Assay for Risk Assessment (MARA) for potential application in the implementation of the Water Framework Directive (WFD). Wadhia K; Dando T; Thompson KC J Environ Monit; 2007 Sep; 9(9):953-8. PubMed ID: 17726555 [TBL] [Abstract][Full Text] [Related]
14. Xenobiotic organic compounds in leachates from ten Danish MSW landfills--chemical analysis and toxicity tests. Baun A; Ledin A; Reitzel LA; Bjerg PL; Christensen TH Water Res; 2004 Nov; 38(18):3845-58. PubMed ID: 15380975 [TBL] [Abstract][Full Text] [Related]
15. Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate, Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate. Cosmetic Ingredient Review Expert Panel Int J Toxicol; 2007; 26 Suppl 2():79-112. PubMed ID: 17613133 [TBL] [Abstract][Full Text] [Related]
16. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox. Ricco G; Tomei MC; Ramadori R; Laera G Water Res; 2004 Apr; 38(8):2103-10. PubMed ID: 15087191 [TBL] [Abstract][Full Text] [Related]
17. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774 [TBL] [Abstract][Full Text] [Related]
18. Screening for soil toxicity and mutagenicity using luminescent bacteria--a case study of the explosive 2,4,6-trinitrotoluene (TNT). Frische T Ecotoxicol Environ Saf; 2002 Feb; 51(2):133-44. PubMed ID: 11886187 [TBL] [Abstract][Full Text] [Related]
19. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Radix P; Léonard M; Papantoniou C; Roman G; Saouter E; Gallotti-Schmitt S; Thiébaud H; Vasseur P Ecotoxicol Environ Saf; 2000 Oct; 47(2):186-94. PubMed ID: 11023697 [TBL] [Abstract][Full Text] [Related]
20. ISTA13--international interlaboratory comparative evaluation of microbial assay for risk assessment (MARA). Wadhia K Environ Toxicol; 2008 Oct; 23(5):626-33. PubMed ID: 18712790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]