BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 7541942)

  • 1. cAMP-independent regulation of CFTR by the actin cytoskeleton.
    Prat AG; Xiao YF; Ausiello DA; Cantiello HF
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Exp Physiol; 1996 May; 81(3):505-14. PubMed ID: 8737083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin filament organization is required for proper cAMP-dependent activation of CFTR.
    Prat AG; Cunningham CC; Jackson GR; Borkan SC; Wang Y; Ausiello DA; Cantiello HF
    Am J Physiol; 1999 Dec; 277(6):C1160-9. PubMed ID: 10600767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts.
    Fischer H; Illek B; Machen TE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance.
    Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism.
    Cantiello HF; Prat AG; Reisin IL; Ercole LB; Abraham EH; Amara JF; Gregory RJ; Ausiello DA
    J Biol Chem; 1994 Apr; 269(15):11224-32. PubMed ID: 7512560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
    Schwiebert EM; Flotte T; Cutting GR; Guggino WB
    Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear ion channel activity is regulated by actin filaments.
    Prat AG; Cantiello HF
    Am J Physiol; 1996 May; 270(5 Pt 1):C1532-43. PubMed ID: 8967456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin filaments regulate epithelial Na+ channel activity.
    Cantiello HF; Stow JL; Prat AG; Ausiello DA
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C882-8. PubMed ID: 1659214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.
    Poulsen JH; Fischer H; Illek B; Machen TE
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5340-4. PubMed ID: 7515498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels.
    Carson MR; Winter MC; Travis SM; Welsh MJ
    J Biol Chem; 1995 Sep; 270(35):20466-72. PubMed ID: 7544788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical basis of the interaction between cystic fibrosis transmembrane conductance regulator and immunoglobulin-like repeats of filamin.
    Smith L; Page RC; Xu Z; Kohli E; Litman P; Nix JC; Ithychanda SS; Liu J; Qin J; Misra S; Liedtke CM
    J Biol Chem; 2010 May; 285(22):17166-76. PubMed ID: 20351101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression.
    Tsumura T; Hazama A; Miyoshi T; Ueda S; Okada Y
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):765-77. PubMed ID: 9769420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR.
    Thelin WR; Chen Y; Gentzsch M; Kreda SM; Sallee JL; Scarlett CO; Borchers CH; Jacobson K; Stutts MJ; Milgram SL
    J Clin Invest; 2007 Feb; 117(2):364-74. PubMed ID: 17235394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases.
    Berger HA; Travis SM; Welsh MJ
    J Biol Chem; 1993 Jan; 268(3):2037-47. PubMed ID: 7678414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents.
    Loussouarn G; Demolombe S; Mohammad-Panah R; Escande D; BarĂ³ I
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1565-73. PubMed ID: 8944640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.
    Reisin IL; Prat AG; Abraham EH; Amara JF; Gregory RJ; Ausiello DA; Cantiello HF
    J Biol Chem; 1994 Aug; 269(32):20584-91. PubMed ID: 7519611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.