These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7542244)
21. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes. Christenson EM; Dadsetan M; Hiltner A J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029 [TBL] [Abstract][Full Text] [Related]
22. Biocompatibility of poly(etherurethane urea) containing dehydroepiandrosterone. Collier T; Tan J; Shive M; Hasan S; Hiltner A; Anderson J J Biomed Mater Res; 1998 Aug; 41(2):192-201. PubMed ID: 9638523 [TBL] [Abstract][Full Text] [Related]
23. Role of oxygen in biodegradation of poly(etherurethane urea) elastomers. Schubert MA; Wiggins MJ; Anderson JM; Hiltner A J Biomed Mater Res; 1997 Mar; 34(4):519-30. PubMed ID: 9054535 [TBL] [Abstract][Full Text] [Related]
24. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes. Santerre JP; Labow RS; Adams GA J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004 [TBL] [Abstract][Full Text] [Related]
25. Prevention of oxidative degradation of polyurethane by covalent attachment of di-tert-butylphenol residues. Stachelek SJ; Alferiev I; Choi H; Chan CW; Zubiate B; Sacks M; Composto R; Chen IW; Levy RJ J Biomed Mater Res A; 2006 Sep; 78(4):653-61. PubMed ID: 16736485 [TBL] [Abstract][Full Text] [Related]
26. Glass wool-H2O2/CoCl2 test system for in vitro evaluation of biodegradative stress cracking in polyurethane elastomers. Zhao Q; Casas-Bejar J; Urbanski P; Stokes K J Biomed Mater Res; 1995 Apr; 29(4):467-75. PubMed ID: 7622531 [TBL] [Abstract][Full Text] [Related]
27. Protein adsorption and endothelial cell attachment and proliferation on PAPI-based additive modified poly(ether urethane ureas). Brunstedt MR; Ziats NP; Schubert M; Stack S; Rose-Caprara V; Hiltner PA; Anderson JM J Biomed Mater Res; 1993 Apr; 27(4):499-510. PubMed ID: 8463351 [TBL] [Abstract][Full Text] [Related]
28. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. Hernandez R; Weksler J; Padsalgikar A; Runt J J Biomed Mater Res A; 2008 Nov; 87(2):546-56. PubMed ID: 18186070 [TBL] [Abstract][Full Text] [Related]
29. In vitro degradation of a poly(ether urethane) by trypsin. Bouvier M; Chawla AS; Hinberg I J Biomed Mater Res; 1991 Jun; 25(6):773-89. PubMed ID: 1874760 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and characterization of fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: a novel bilayered surface structure. Xie X; Tan H; Li J; Zhong Y J Biomed Mater Res A; 2008 Jan; 84(1):30-43. PubMed ID: 17600322 [TBL] [Abstract][Full Text] [Related]
31. Infrared spectral analysis of extractables from poly(etherurethane urea) (PEUU) elastomers. Renier M; Anderson JM; Hiltner A; Lodoen GA; Payet CR J Biomater Sci Polym Ed; 1993; 5(3):231-44. PubMed ID: 8155611 [TBL] [Abstract][Full Text] [Related]
32. The effect of strain state on the biostability of a poly(etherurethane urea) elastomer. Schubert MA; Wiggins MJ; Anderson JM; Hiltner A J Biomed Mater Res; 1997 Jun; 35(3):319-28. PubMed ID: 9138066 [TBL] [Abstract][Full Text] [Related]
33. The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Kannan RY; Salacinski HJ; Odlyha M; Butler PE; Seifalian AM Biomaterials; 2006 Mar; 27(9):1971-9. PubMed ID: 16253324 [TBL] [Abstract][Full Text] [Related]
34. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308 [TBL] [Abstract][Full Text] [Related]
35. The effects of soft segment structure on the fatigue crack propagation of model polyurethanes. Kim HJ; Benson RS Biomed Mater Eng; 1994; 4(3):171-85. PubMed ID: 7950866 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation. Rafiemanzelat F; Fathollahi Zonouz A; Emtiazi G Amino Acids; 2013 Feb; 44(2):449-59. PubMed ID: 22833157 [TBL] [Abstract][Full Text] [Related]
37. The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Simmons A; Hyvarinen J; Poole-Warren L Biomaterials; 2006 Sep; 27(25):4484-97. PubMed ID: 16690122 [TBL] [Abstract][Full Text] [Related]
38. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Lligadas G; Ronda JC; Galià M; Cádiz V Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093 [TBL] [Abstract][Full Text] [Related]
39. Biological stability of polyurethane modified with covalent attachment of di-tert-butyl-phenol. Stachelek SJ; Alferiev I; Fulmer J; Ischiropoulos H; Levy RJ J Biomed Mater Res A; 2007 Sep; 82(4):1004-11. PubMed ID: 17370325 [TBL] [Abstract][Full Text] [Related]
40. In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: resistance to biologic oxidation and stress cracking. Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Dec; 79(4):827-35. PubMed ID: 16886223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]