These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7542390)

  • 1. Association between brain indole levels and severity of posthypoxic myoclonus in rats.
    Matsumoto RR; Aziz N; Truong DD
    Pharmacol Biochem Behav; 1995 Apr; 50(4):533-8. PubMed ID: 7542390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of selective serotonergic ligands on posthypoxic audiogenic myoclonus.
    Matsumoto RR; Hussong MJ; Truong DD
    Mov Disord; 1995 Sep; 10(5):615-21. PubMed ID: 8552114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal model of posthypoxic myoclonus: effects of serotonergic antagonists.
    Pappert EJ; Goetz CG; Vu TQ; Ling ZD; Leurgans S; Raman R; Carvey PM
    Neurology; 1999 Jan; 52(1):16-21. PubMed ID: 9921842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic treatments with 5-HT1A agonists attenuate posthypoxic myoclonus in rats.
    Jaw SP; Dang T; Truong DD
    Pharmacol Biochem Behav; 1995 Nov; 52(3):577-80. PubMed ID: 8545477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats.
    Lynn-Bullock CP; Welshhans K; Pallas SL; Katz PS
    J Chem Neuroanat; 2004 May; 27(2):129-38. PubMed ID: 15121217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of 5-HT2 receptors in posthypoxic stimulus-sensitive myoclonus in rats.
    Jaw SP; Hussong MJ; Matsumoto RR; Truong DD
    Pharmacol Biochem Behav; 1994 Sep; 49(1):129-31. PubMed ID: 7816862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical, biochemical, and pharmacological observation in a patient with postasphyxic myoclonus: association to serotonin hyperactivity.
    Giménez-Roldán S; Mateo D; Muradas V; De Yebenes JG
    Clin Neuropharmacol; 1988 Apr; 11(2):151-60. PubMed ID: 2454156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of the anticonvulsant valproic acid on cerebral indole amine metabolism.
    MacMillan V
    Can J Physiol Pharmacol; 1979 Aug; 57(8):843-7. PubMed ID: 387187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-5-hydroxytryptophan. Correlation between anticonvulsant effect and increases in levels of 5-hydroxyindoles in plasma and brain.
    Löscher W; Pagliusi SR; Müller F
    Neuropharmacology; 1984 Sep; 23(9):1041-8. PubMed ID: 6083501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The serotonin hypothesis of myoclonus from the perspective of neuronal rhythmicity.
    Welsh JP; Placantonakis DG; Warsetsky SI; Marquez RG; Bernstein L; Aicher SA
    Adv Neurol; 2002; 89():307-29. PubMed ID: 11968457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of repeated levodopa administration on rabbit striatal serotonin metabolism, and comparison between striatal and CSF alterations.
    Loeffler DA; LeWitt PA; Juneau PL; Camp DM; DeMaggio AJ; Havaich MK; Milbury PE; Matson WR
    Neurochem Res; 1998 Dec; 23(12):1521-5. PubMed ID: 9821156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of L-dopa loading on 5-HTP decarboxylation in rat brain areas.
    Trouvin JH; Maubrey MC; Raynal H; Jacquot C
    Fundam Clin Pharmacol; 1991; 5(6):497-502. PubMed ID: 1720112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal models of myoclonus.
    Kanthasamy AG; Matsumoto RR; Truong DD
    Clin Neurosci; 1995-1996; 3(4):236-45. PubMed ID: 8891397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [3H]paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region.
    Dewar KM; Reader TA; Grondin L; Descarries L
    Synapse; 1991 Sep; 9(1):14-26. PubMed ID: 1724575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperidinyl indole).
    Euvrard C; Boissier JR
    Eur J Pharmacol; 1980 Apr; 63(1):65-72. PubMed ID: 6155275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMDA receptor-mediated excitotoxicity contributes to the cerebral hypoxic injury of a rat model of posthypoxic myoclonus.
    Tai KK; Truong DD
    Brain Res; 2007 Feb; 1133(1):209-15. PubMed ID: 17196560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of acute hypercapnia on cerebral indole amine metabolism.
    MacMillan V
    Can J Physiol Pharmacol; 1978 Apr; 56(2):223-6. PubMed ID: 305815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel rat cardiac arrest model of posthypoxic myoclonus.
    Truong DD; Matsumoto RR; Schwartz PH; Hussong MJ; Wasterlain CG
    Mov Disord; 1994 Mar; 9(2):201-6. PubMed ID: 8196684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of p-chlorophenylalanine on release of 5-hydroxytryptamine from the rat frontal cortex in vivo.
    O'Connell MT; Portas CM; Sarna GS; Curzon G
    Br J Pharmacol; 1991 Apr; 102(4):831-6. PubMed ID: 1713108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 5-hydroxytryptophan on extracellular serotonin in the spinal cord of rats with experimental allergic encephalomyelitis.
    Samathanam GK; White SR; Kalivas PW; Duffy P
    Brain Res; 1991 Sep; 559(1):37-43. PubMed ID: 1723645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.