These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7542543)

  • 1. A new cutaneous nerve fiber connection with the frontal nerve in the frog Rana esculenta: a morphological study.
    Guglielmotti V; Fiorino L; Sada E
    Brain Res Bull; 1995; 37(4):337-42. PubMed ID: 7542543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide synthase activity reveals an asymmetrical organization of the frog habenulae during development: A histochemical and cytoarchitectonic study from tadpoles to the mature Rana esculenta, with notes on the pineal complex.
    Guglielmotti V; Fiorino L
    J Comp Neurol; 1999 Aug; 411(3):441-54. PubMed ID: 10413778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extracranial portion of the pineal complex of the frog (frontal organ) is connected to the pineal, the hypothalamus, the brain stem and the retina.
    Kemali M; De Santis A
    Exp Brain Res; 1983; 53(1):193-6. PubMed ID: 6201381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variations in the frontal organ of the frog: structural evidence and physiological correlates.
    Guglielmotti V; Vota-Pinardi U; Fiorino L; Sada E
    Comp Biochem Physiol A Physiol; 1997 Feb; 116(2):137-41. PubMed ID: 9011034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphometric analysis of early regeneration of motor axons through motor and cutaneous nerve grafts.
    Ghalib N; Houst'ava L; Haninec P; Dubový P
    Ann Anat; 2001 Jul; 183(4):363-8. PubMed ID: 11508363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topography of cutaneous spinal ganglion cells in the frog (Rana esculenta).
    Corner MA; Veltman WA; Baker RE; Van de Nes J
    Brain Res; 1978 Nov; 156(1):151-6. PubMed ID: 308834
    [No Abstract]   [Full Text] [Related]  

  • 7. Methylene blue staining for nerve-sparing operative procedures: an animal model.
    Seif C; Martínez Portillo FJ; Osmonov DK; Böhler G; van der Horst C; Leissner J; Hohenfellner R; Juenemann KP; Braun PM
    Urology; 2004 Jun; 63(6):1205-8. PubMed ID: 15183990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of stapedial nerve fibers in the facial nerve trunk.
    Murakami S; Yanagihara N; Matsumoto Y; Okamura H
    Ann Otol Rhinol Laryngol Suppl; 1984; 111():3-6. PubMed ID: 6203460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetry in the left and right habenulo-interpeduncular tracts in the frog.
    Gugliemotti V; Fiorino L
    Brain Res Bull; 1998; 45(1):105-10. PubMed ID: 9434210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of nerve fibers innervating cutaneous corpuscles within cephalic skin of the texas rat snake.
    Jackson MK; Doetsch GS
    Exp Neurol; 1977 Jul; 56(1):63-77. PubMed ID: 862696
    [No Abstract]   [Full Text] [Related]  

  • 11. Origin of centrifugal fibers to the labyrinth in the frog (Rana esculenta). A study with the fluorescent retrograde neuronal tracer 'Fast blue'.
    Strutz J; Spatz WB; Schmidt CL; Stürmer C
    Brain Res; 1981 Jun; 215(1-2):323-8. PubMed ID: 6167319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-myelinated fibers of the phrenic and the intercostal nerves in the cat.
    Duron B; Marlot D
    Z Mikrosk Anat Forsch; 1980; 94(2):257-68. PubMed ID: 7415394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The epithalamus of the developing and adult frog: calretinin expression and habenular asymmetry in Rana esculenta.
    Guglielmotti V; Cristino L; Sada E; Bentivoglio M
    Brain Res; 2004 Feb; 999(1):9-19. PubMed ID: 14746917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation and staining of myelinated nerve fibers.
    Feirabend HK; Choufoer H; Ploeger S
    Methods; 1998 Jun; 15(2):123-31. PubMed ID: 9654459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation by modality of myelinated and unmyelinated fibers in human sensory nerve fascicles.
    Hallin RG; Ekedahl R; Frank O
    Muscle Nerve; 1991 Feb; 14(2):157-65. PubMed ID: 2000105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for increasing the frequency response of voltage clamped myelinated nerve fibres.
    Koppenhöfer E; Schumann H
    Pflugers Arch; 1981 Jun; 390(3):288-9. PubMed ID: 6973137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ characterization of mast cells in the frog Rana esculenta.
    Chieffi Baccari G; de Paulis A; Di Matteo L; Gentile M; Marone G; Minucci S
    Cell Tissue Res; 1998 Apr; 292(1):151-62. PubMed ID: 9506923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Degeneration of the pineal nerve of Rana esculenta L. following frontal-organ proximal and distal transection].
    Böttger WV; Böttger EM
    Z Zellforsch Mikrosk Anat; 1973; 136(3):365-91. PubMed ID: 4346506
    [No Abstract]   [Full Text] [Related]  

  • 19. Localization of GnRH molecular forms in the brain, pituitary, and testis of the frog, Rana esculenta.
    Di Matteo L; Vallarino M; Pierantoni R
    J Exp Zool; 1996 Jan; 274(1):33-40. PubMed ID: 8583206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM combines functional and morphological analysis of peripheral myelinated and demyelinated nerve fibers.
    Heredia A; Bui CC; Suter U; Young P; Schäffer TE
    Neuroimage; 2007 Oct; 37(4):1218-26. PubMed ID: 17689984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.