These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7542724)

  • 1. Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E.
    Fritsch J; Rothfuchs R; Rauhut R; Klug G
    Mol Microbiol; 1995 Mar; 15(6):1017-29. PubMed ID: 7542724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate of decay of Rhodobacter capsulatus-specific puf mRNA segments is differentially affected by RNase E activity in Escherichia coli.
    Klug G; Jock S; Rothfuchs R
    Gene; 1992 Nov; 121(1):95-102. PubMed ID: 1427102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus.
    Heck C; Rothfuchs R; Jäger A; Rauhut R; Klug G
    Mol Microbiol; 1996 Jun; 20(6):1165-78. PubMed ID: 8809769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNase E enzymes from rhodobacter capsulatus and Escherichia coli differ in context- and sequence-dependent in vivo cleavage within the polycistronic puf mRNA.
    Heck C; Evguenieva-Hackenberg E; Balzer A; Klug G
    J Bacteriol; 1999 Dec; 181(24):7621-5. PubMed ID: 10601223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial events in the degradation of the polycistronic puf mRNA in Rhodobacter capsulatus and consequences for further processing steps.
    Heck C; Balzer A; Fuhrmann O; Klug G
    Mol Microbiol; 2000 Jan; 35(1):90-100. PubMed ID: 10632880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli.
    Naureckiene S; Uhlin BE
    Mol Microbiol; 1996 Jul; 21(1):55-68. PubMed ID: 8843434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli.
    Conrad C; Rauhut R; Klug G
    Nucleic Acids Res; 1998 Oct; 26(19):4446-53. PubMed ID: 9742248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the puf operon of the obligately aerobic, bacteriochlorophyll alpha-containing bacterium Roseobacter denitrificans OCh114 and its expression in a Rhodobacter capsulatus puf puc deletion mutant.
    Kortlüke C; Breese K; Gad'on N; Labahn A; Drews G
    J Bacteriol; 1997 Sep; 179(17):5247-58. PubMed ID: 9286973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures.
    Smolke CD; Carrier TA; Keasling JD
    Appl Environ Microbiol; 2000 Dec; 66(12):5399-405. PubMed ID: 11097920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen.
    Klug G
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1765-9. PubMed ID: 1705706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of the rnc gene for RNase III in Rhodobacter capsulatus.
    Rauhut R; Jäger A; Conrad C; Klug G
    Nucleic Acids Res; 1996 Apr; 24(7):1246-51. PubMed ID: 8614626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus.
    Jäger S; Evguenieva-Hackenberg E; Klug G
    Microbiology (Reading); 2004 Mar; 150(Pt 3):687-695. PubMed ID: 14993318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective decay of Escherichia coli dnaG messenger RNA is initiated by RNase E.
    Yajnik V; Godson GN
    J Biol Chem; 1993 Jun; 268(18):13253-60. PubMed ID: 7685758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition and activity of the Rhodobacter capsulatus degradosome vary under different oxygen concentrations.
    Jäger S; Hebermehl M; Schiltz E; Klug G
    J Mol Microbiol Biotechnol; 2004; 7(3):148-54. PubMed ID: 15263819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of translation on degradation of mRNA segments transcribed from the polycistronic puf operon of Rhodobacter capsulatus.
    Klug G; Cohen SN
    J Bacteriol; 1991 Feb; 173(4):1478-84. PubMed ID: 1995592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes.
    Klug G
    Mol Microbiol; 1993 Jul; 9(1):1-7. PubMed ID: 7692215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner.
    Hambraeus G; Rutberg B
    Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli.
    Bouvet P; Belasco JG
    Nature; 1992 Dec; 360(6403):488-91. PubMed ID: 1280335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli RNase III (rnc) autoregulation occurs independently of rnc gene translation.
    Matsunaga J; Simons EL; Simons RW
    Mol Microbiol; 1997 Dec; 26(5):1125-35. PubMed ID: 9426147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing of 5' monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo.
    Jourdan SS; McDowall KJ
    Mol Microbiol; 2008 Jan; 67(1):102-15. PubMed ID: 18078441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.