BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 7542778)

  • 1. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.
    Fulmer SB; Schwiebert EM; Morales MM; Guggino WB; Cutting GR
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6832-6. PubMed ID: 7542778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells.
    Rich DP; Anderson MP; Gregory RJ; Cheng SH; Paul S; Jefferson DM; McCann JD; Klinger KW; Smith AE; Welsh MJ
    Nature; 1990 Sep; 347(6291):358-63. PubMed ID: 1699126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels.
    Mickle JE; Milewski MI; Macek M; Cutting GR
    Am J Hum Genet; 2000 May; 66(5):1485-95. PubMed ID: 10762539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No evidence for direct activation of the cystic fibrosis transmembrane conductance regulator by 8-cyclopentyl-1,3-dipropylxanthine.
    Kunzelmann K; Briel M; Schreiber R; Ricken S; Nitschke R; Greger R
    Cell Physiol Biochem; 1998; 8(4):185-93. PubMed ID: 9694345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
    Schwiebert EM; Flotte T; Cutting GR; Guggino WB
    Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis.
    Mickle JE; Macek M; Fulmer-Smentek SB; Egan MM; Schwiebert E; Guggino W; Moss R; Cutting GR
    Hum Mol Genet; 1998 Apr; 7(4):729-35. PubMed ID: 9499426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of a cAMP-stimulated chloride secretion in regenerating poorly differentiated airway epithelial cells by adenovirus-mediated CFTR gene transfer.
    Dupuit F; Chinet T; Zahm JM; Pierrot D; Hinnrasky J; Kaplan H; Bonnet N; Puchelle E
    Hum Gene Ther; 1997 Aug; 8(12):1439-50. PubMed ID: 9287144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes.
    Suaud L; Yan W; Rubenstein RC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C603-11. PubMed ID: 16822950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance.
    Strong TV; Wilkinson DJ; Mansoura MK; Devor DC; Henze K; Yang Y; Wilson JM; Cohn JA; Dawson DC; Frizzell RA
    Hum Mol Genet; 1993 Mar; 2(3):225-30. PubMed ID: 7684641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC.
    Suaud L; Yan W; Carattino MD; Robay A; Kleyman TR; Rubenstein RC
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1553-61. PubMed ID: 17182731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.
    Julien M; Verrier B; Cerutti M; Chappe V; Gola M; Devauchelle G; Becq F
    J Membr Biol; 1999 Apr; 168(3):229-39. PubMed ID: 10191357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of a novel CFTR mutation P67S identified in a patient with atypical cystic fibrosis.
    Kraus C; Reis A; Naehrlich L; Dötsch J; Korbmacher C; Rauh R
    Cell Physiol Biochem; 2007; 19(5-6):239-48. PubMed ID: 17495464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of ORCC and CFTR induced by low temperature in CF airway epithelial cells.
    Egan ME; Schwiebert EM; Guggino WB
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C243-51. PubMed ID: 7530908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice.
    Clarke LL; Grubb BR; Yankaskas JR; Cotton CU; McKenzie A; Boucher RC
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):479-83. PubMed ID: 7507247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice.
    Winpenny JP; Verdon B; McAlroy HL; Colledge WH; Ratcliff R; Evans MJ; Gray MA; Argent BE
    Pflugers Arch; 1995 May; 430(1):26-33. PubMed ID: 7545279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes.
    Trouvé P; Kerbiriou M; Teng L; Benz N; Taiya M; Le Hir S; Férec C
    Cell Biol Int; 2015 Aug; 39(8):978-85. PubMed ID: 25712891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes.
    Kunzelmann K; Mall M; Briel M; Hipper A; Nitschke R; Ricken S; Greger R
    Pflugers Arch; 1997 Dec; 435(1):178-81. PubMed ID: 9359918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.