These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7542911)
1. Detection of multiple gains and losses of genetic material in ten glioma cell lines by comparative genomic hybridization. Mohapatra G; Kim DH; Feuerstein BG Genes Chromosomes Cancer; 1995 Jun; 13(2):86-93. PubMed ID: 7542911 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Kim DH; Mohapatra G; Bollen A; Waldman FM; Feuerstein BG Int J Cancer; 1995 Mar; 60(6):812-9. PubMed ID: 7896451 [TBL] [Abstract][Full Text] [Related]
3. Gains and losses of DNA sequences in childhood brain tumors analyzed by comparative genomic hybridization. Shlomit R; Ayala AG; Michal D; Ninett A; Frida S; Boleslaw G; Gad B; Gideon R; Shlomi C Cancer Genet Cytogenet; 2000 Aug; 121(1):67-72. PubMed ID: 10958944 [TBL] [Abstract][Full Text] [Related]
4. Molecular cytogenetic quantitation of gains and losses of genetic material from human gliomas. Feuerstein BG; Mohapatra G J Neurooncol; 1995; 24(1):47-55. PubMed ID: 8523075 [TBL] [Abstract][Full Text] [Related]
5. Genomic changes in glioblastoma cell lines detected by comparative genomic hybridization. Venkatraj VS; Begemann M; Sobrino A; Bruce JN; Weinstein IB; Warburton D J Neurooncol; 1998 Jan; 36(2):141-8. PubMed ID: 9525813 [TBL] [Abstract][Full Text] [Related]
6. Molecular classification of human gliomas using matrix-based comparative genomic hybridization. Roerig P; Nessling M; Radlwimmer B; Joos S; Wrobel G; Schwaenen C; Reifenberger G; Lichter P Int J Cancer; 2005 Oct; 117(1):95-103. PubMed ID: 15880582 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Schröck E; Thiel G; Lozanova T; du Manoir S; Meffert MC; Jauch A; Speicher MR; Nürnberg P; Vogel S; Jänisch W Am J Pathol; 1994 Jun; 144(6):1203-18. PubMed ID: 8203461 [TBL] [Abstract][Full Text] [Related]
8. Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Weber RG; Sommer C; Albert FK; Kiessling M; Cremer T Lab Invest; 1996 Jan; 74(1):108-19. PubMed ID: 8569172 [TBL] [Abstract][Full Text] [Related]
9. DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations. Van Dekken H; Krijtenburg PJ; Alers JC Acta Histochem; 2000 Feb; 102(1):85-94. PubMed ID: 10726167 [TBL] [Abstract][Full Text] [Related]
10. Arm-specific multicolor fluorescence in situ hybridization reveals widespread chromosomal instability in glioma cell lines. Sallinen SL; Sallinen P; Ahlstedt-Soini M; Haapasalo H; Helin H; Isola J; Karhu R Cancer Genet Cytogenet; 2003 Jul; 144(1):52-60. PubMed ID: 12810256 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Larramendy ML; Tarkkanen M; Blomqvist C; Virolainen M; Wiklund T; Asko-Seljavaara S; Elomaa I; Knuutila S Am J Pathol; 1997 Oct; 151(4):1153-61. PubMed ID: 9327749 [TBL] [Abstract][Full Text] [Related]
12. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. du Manoir S; Speicher MR; Joos S; Schröck E; Popp S; Döhner H; Kovacs G; Robert-Nicoud M; Lichter P; Cremer T Hum Genet; 1993 Feb; 90(6):590-610. PubMed ID: 8444465 [TBL] [Abstract][Full Text] [Related]
13. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Plantaz D; Mohapatra G; Matthay KK; Pellarin M; Seeger RC; Feuerstein BG Am J Pathol; 1997 Jan; 150(1):81-9. PubMed ID: 9006325 [TBL] [Abstract][Full Text] [Related]
14. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Marchio A; Meddeb M; Pineau P; Danglot G; Tiollais P; Bernheim A; Dejean A Genes Chromosomes Cancer; 1997 Jan; 18(1):59-65. PubMed ID: 8993981 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan. Lin YW; Sheu JC; Huang GT; Lee HS; Chen CH; Wang JT; Lee PH; Lu FJ Eur J Cancer; 1999 Apr; 35(4):652-8. PubMed ID: 10492642 [TBL] [Abstract][Full Text] [Related]
16. [Detection of amplified DNA sequences by comparative genomic in situ hybridization with human glioma tumor DNA as probe]. Schlegel J; Scherthan H; Arens N; Stumm G; Cremer T; Kiessling M Verh Dtsch Ges Pathol; 1994; 78():204-7. PubMed ID: 7533987 [TBL] [Abstract][Full Text] [Related]
17. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Aalto Y; Eriksson L; Seregard S; Larsson O; Knuutila S Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):313-7. PubMed ID: 11157859 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Shinomiya T; Mori T; Ariyama Y; Sakabe T; Fukuda Y; Murakami Y; Nakamura Y; Inazawa J Genes Chromosomes Cancer; 1999 Apr; 24(4):337-44. PubMed ID: 10092132 [TBL] [Abstract][Full Text] [Related]
19. Characterization of double minute chromosomes' DNA content in a human high grade astrocytoma cell line by using comparative genomic hybridization and fluorescence in situ hybridization. Giollant M; Bertrand S; Verrelle P; Tchirkov A; du Manoir S; Ried T; Mornex F; Doré JF; Cremer T; Malet P Hum Genet; 1996 Sep; 98(3):265-70. PubMed ID: 8707292 [TBL] [Abstract][Full Text] [Related]