These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 7542923)

  • 1. Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides.
    Wang S; Friedman AE; Kool ET
    Biochemistry; 1995 Aug; 34(30):9774-84. PubMed ID: 7542923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.
    Wang S; Kool ET
    Nucleic Acids Res; 1994 Jun; 22(12):2326-33. PubMed ID: 7518582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting pyrimidine single strands by triplex formation: structural optimization of binding.
    Vo T; Wang S; Kool ET
    Nucleic Acids Res; 1995 Aug; 23(15):2937-44. PubMed ID: 7544889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative stabilities of triple helices composed of combinations of DNA, RNA and 2'-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes.
    Wang S; Kool ET
    Nucleic Acids Res; 1995 Apr; 23(7):1157-64. PubMed ID: 7537873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Rev·RRE complexation by triplex tethered oligonucleotide probes.
    Moses AC; Huang SW; Schepartz A
    Bioorg Med Chem; 1997 Jun; 5(6):1123-9. PubMed ID: 9222506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation.
    Xu Z; Pilch DS; Srinivasan AR; Olson WK; Geacintov NE; Breslauer KJ
    Bioorg Med Chem; 1997 Jun; 5(6):1137-47. PubMed ID: 9222508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single strand targeted triplex formation: strand displacement of duplex DNA by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Manning AN; Agrawal S
    J Biomol Struct Dyn; 1995 Dec; 13(3):483-91. PubMed ID: 8825728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Berenil binding to higher ordered nucleic acid structures: complexation with a DNA and RNA triple helix.
    Pilch DS; Kirolos MA; Breslauer KJ
    Biochemistry; 1995 Dec; 34(49):16107-24. PubMed ID: 8519768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1.
    Antony T; Thomas T; Sigal LH; Shirahata A; Thomas TJ
    Biochemistry; 2001 Aug; 40(31):9387-95. PubMed ID: 11478908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex-directed self-assembly of an artificial sliding clamp on duplex DNA.
    Ryan K; Kool ET
    Chem Biol; 1998 Feb; 5(2):59-67. PubMed ID: 9495829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity and stringency in DNA triplex formation.
    Roberts RW; Crothers DM
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9397-401. PubMed ID: 1946351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of adjacent triplex-duplex domainsin DNA.
    Nam KH; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1999 Feb; 27(3):859-65. PubMed ID: 9889284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.