These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 7542924)

  • 1. Evidence for class-specific discrimination of a semiconserved base pair by tRNA synthetases.
    Liu H; Kessler J; Peterson R; Musier-Forsyth K
    Biochemistry; 1995 Aug; 34(30):9795-800. PubMed ID: 7542924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Region of a conserved sequence motif in a class II tRNA synthetase needed for transfer of an activated amino acid to an RNA substrate.
    Shi JP; Musier-Forsyth K; Schimmel P
    Biochemistry; 1994 May; 33(17):5312-8. PubMed ID: 8172905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of a class II tRNA synthetase: determinants for minihelix recognition are tightly associated with domain for amino acid activation.
    Buechter DD; Schimmel P
    Biochemistry; 1993 May; 32(19):5267-72. PubMed ID: 8494904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient aminoacylation of the tRNA(Ala) acceptor stem: dependence on the 2:71 base pair.
    Beuning PJ; Nagan MC; Cramer CJ; Musier-Forsyth K; GelpĂ­ JL; Bashford D
    RNA; 2002 May; 8(5):659-70. PubMed ID: 12022232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition.
    Ramos A; Varani G
    Nucleic Acids Res; 1997 Jun; 25(11):2083-90. PubMed ID: 9153306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct domains of tRNA synthetase recognize the same base pair.
    Beebe K; Mock M; Merriman E; Schimmel P
    Nature; 2008 Jan; 451(7174):90-3. PubMed ID: 18172502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional contacts of a transfer RNA synthetase with 2'-hydroxyl groups in the RNA minor groove.
    Musier-Forsyth K; Schimmel P
    Nature; 1992 Jun; 357(6378):513-5. PubMed ID: 1608452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase.
    Cusack S; Yaremchuk A; Krikliviy I; Tukalo M
    Structure; 1998 Jan; 6(1):101-8. PubMed ID: 9493271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceptor helix interactions in a class II tRNA synthetase: photoaffinity cross-linking of an RNA miniduplex substrate.
    Musier-Forsyth K; Schimmel P
    Biochemistry; 1994 Jan; 33(3):773-9. PubMed ID: 8292605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
    Liu M; Chu WC; Liu JC; Horowitz J
    Nucleic Acids Res; 1997 Dec; 25(24):4883-90. PubMed ID: 9396792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine.
    Francklyn C; Schimmel P
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8655-9. PubMed ID: 2236077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping contacts between Escherichia coli alanyl tRNA synthetase and 2' hydroxyls using a complete tRNA molecule.
    Pleiss JA; Wolfson AD; Uhlenbeck OC
    Biochemistry; 2000 Jul; 39(28):8250-8. PubMed ID: 10889033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase.
    Buechter DD; Schimmel P
    Biochemistry; 1995 May; 34(18):6014-9. PubMed ID: 7742303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-Ala domain brings together editing and aminoacylation functions on one tRNA.
    Guo M; Chong YE; Beebe K; Shapiro R; Yang XL; Schimmel P
    Science; 2009 Aug; 325(5941):744-7. PubMed ID: 19661429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase.
    Gabriel K; Schneider J; McClain WH
    Science; 1996 Jan; 271(5246):195-7. PubMed ID: 8539617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of discriminator base atomic groups that modulate the alanine aminoacylation reaction.
    Fischer AE; Beuning PJ; Musier-Forsyth K
    J Biol Chem; 1999 Dec; 274(52):37093-6. PubMed ID: 10601268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition.
    Swairjo MA; Otero FJ; Yang XL; Lovato MA; Skene RJ; McRee DE; Ribas de Pouplana L; Schimmel P
    Mol Cell; 2004 Mar; 13(6):829-41. PubMed ID: 15053876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.