BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 7543698)

  • 1. CFTR as a cAMP-dependent regulator of sodium channels.
    Stutts MJ; Canessa CM; Olsen JC; Hamrick M; Cohn JA; Rossier BC; Boucher RC
    Science; 1995 Aug; 269(5225):847-50. PubMed ID: 7543698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+ and Cl- conductances in airway epithelial cells: increased Na+ conductance in cystic fibrosis.
    Kunzelmann K; Kathöfer S; Greger R
    Pflugers Arch; 1995 Nov; 431(1):1-9. PubMed ID: 8584404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [CFTR as cAMP-dependent chloride channels and as cAMP-dependent regulator of sodium channels].
    Tohyama M
    Nihon Rinsho; 1996 Feb; 54(2):429-33. PubMed ID: 8838092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype.
    Beck S; Kühr J; Schütz VV; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Pediatr Pulmonol; 1999 Apr; 27(4):251-9. PubMed ID: 10230924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
    Schwiebert EM; Flotte T; Cutting GR; Guggino WB
    Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Kiser GL; Schreiber R; Riordan JR
    FEBS Lett; 1997 Jan; 400(3):341-4. PubMed ID: 9009227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP stimulates CFTR-like Cl- channels and inhibits amiloride-sensitive Na+ channels in mouse CCD cells.
    Letz B; Korbmacher C
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C657-66. PubMed ID: 9124310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.
    Johnson LG; Boyles SE; Wilson J; Boucher RC
    J Clin Invest; 1995 Mar; 95(3):1377-82. PubMed ID: 7533790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator.
    Su X; Li Q; Shrestha K; Cormet-Boyaka E; Chen L; Smith PR; Sorscher EJ; Benos DJ; Matalon S; Ji HL
    J Biol Chem; 2006 Dec; 281(48):36960-8. PubMed ID: 17012229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel.
    Ji HL; Chalfant ML; Jovov B; Lockhart JP; Parker SB; Fuller CM; Stanton BA; Benos DJ
    J Biol Chem; 2000 Sep; 275(36):27947-56. PubMed ID: 10821834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.
    Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes.
    Mall M; Hipper A; Greger R; Kunzelmann K
    FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid movement across the surface epithelium of large airways.
    Chambers LA; Rollins BM; Tarran R
    Respir Physiol Neurobiol; 2007 Dec; 159(3):256-70. PubMed ID: 17692578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis.
    Mall M; Bleich M; Kuehr J; Brandis M; Greger R; Kunzelmann K
    Am J Physiol; 1999 Sep; 277(3):G709-16. PubMed ID: 10484398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia.
    Liu X; Luo M; Zhang L; Ding W; Yan Z; Engelhardt JF
    Am J Respir Cell Mol Biol; 2007 Mar; 36(3):313-23. PubMed ID: 17008635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line.
    Ling BN; Zuckerman JB; Lin C; Harte BJ; McNulty KA; Smith PR; Gomez LM; Worrell RT; Eaton DC; Kleyman TR
    J Biol Chem; 1997 Jan; 272(1):594-600. PubMed ID: 8995302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP triggers Na
    Luan X; Le Y; Jagadeeshan S; Murray B; Carmalt JL; Duke T; Beazley S; Fujiyama M; Swekla K; Gray B; Burmester M; Campanucci VA; Shipley A; Machen TE; Tam JS; Ianowski JP
    Cell Rep; 2021 Oct; 37(1):109795. PubMed ID: 34610318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis.
    Knowles MR; Paradiso AM; Boucher RC
    Hum Gene Ther; 1995 Apr; 6(4):445-55. PubMed ID: 7542031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.