BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7543944)

  • 1. Inwardly rectifying currents of saccular hair cells from the leopard frog.
    Holt JR; Eatock RA
    J Neurophysiol; 1995 Apr; 73(4):1484-502. PubMed ID: 7543944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana.
    Hudspeth AJ; Lewis RS
    J Physiol; 1988 Jun; 400():237-74. PubMed ID: 2458454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inwardly rectifying currents in hair cells and supporting cells in the goldfish sacculus.
    Sugihara I; Furukawa T
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):665-79. PubMed ID: 8887774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient and sustained depolarization of retinal ganglion cells by Ih.
    Tabata T; Ishida AT
    J Neurophysiol; 1996 May; 75(5):1932-43. PubMed ID: 8734592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration.
    Masetto S; Correia MJ
    J Neurophysiol; 1997 Oct; 78(4):1913-27. PubMed ID: 9325360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem.
    Banks MI; Pearce RA; Smith PH
    J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro.
    Bayliss DA; Viana F; Bellingham MC; Berger AJ
    J Neurophysiol; 1994 Jan; 71(1):119-28. PubMed ID: 7512625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro.
    Harris NC; Constanti A
    J Neurophysiol; 1995 Dec; 74(6):2366-78. PubMed ID: 8747199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and functional aspects of two different types of hair cells in the goldfish sacculus.
    Sugihara I; Furukawa T
    J Neurophysiol; 1989 Dec; 62(6):1330-43. PubMed ID: 2600628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two kinetically distinct components of hyperpolarization-activated current in rat superior colliculus-projecting neurons.
    Solomon JS; Nerbonne JM
    J Physiol; 1993 Sep; 469():291-313. PubMed ID: 7505823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca selectivity of the transduction channels in the hair cells of the frog sacculus.
    Jørgensen F; Kroese AB
    Acta Physiol Scand; 1995 Dec; 155(4):363-76. PubMed ID: 8719256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron.
    Kiehn O; Harris-Warrick RM
    J Neurophysiol; 1992 Aug; 68(2):496-508. PubMed ID: 1382120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent currents in isolated cells of the frog retinal pigment epithelium.
    Hughes BA; Steinberg RH
    J Physiol; 1990 Sep; 428():273-97. PubMed ID: 2231414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct types of inwardly rectifying K+ channels in bull-frog atrial myocytes.
    Clark RB; Nakajima T; Giles W; Kanai K; Momose Y; Szabo G
    J Physiol; 1990 May; 424():229-51. PubMed ID: 2202811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):698-714. PubMed ID: 8871192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channels of myenteric neurons in guinea-pig small intestine.
    Zholos AV; Baidan LV; Starodub AM; Wood JD
    Neuroscience; 1999 Mar; 89(2):603-18. PubMed ID: 10077339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of voltage-gated and calcium-activated potassium currents in toadfish saccular hair cells.
    Steinacker A; Romero A
    Brain Res; 1991 Aug; 556(1):22-32. PubMed ID: 1933352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane.
    Sakmann B; Trube G
    J Physiol; 1984 Feb; 347():659-83. PubMed ID: 6323704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana.
    Hudspeth AJ; Lewis RS
    J Physiol; 1988 Jun; 400():275-97. PubMed ID: 2458455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.