These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7544159)

  • 1. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions.
    Rees GD; Robinson BH; Stephenson GR
    Biochim Biophys Acta; 1995 Aug; 1257(3):239-48. PubMed ID: 7544159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparative-scale kinetic resolutions catalysed by microbial lipases immobilised in AOT-stabilised microemulsion-based organogels: cryoenzymology as a tool for improving enantioselectivity.
    Rees GD; Robinson BH; Stephenson GR
    Biochim Biophys Acta; 1995 Oct; 1259(1):73-81. PubMed ID: 7492618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by 'lone' sodium counterions in the water-pool.
    Oldfield C; Freedman RB; Robinson BH
    Faraday Discuss; 2005; 129():247-63; discussion 275-89. PubMed ID: 15715311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant interference on lipase catalysed reactions in microemulsions.
    Skagerlind P; Jansson M; Hult K
    J Chem Technol Biotechnol; 1992; 54(3):277-82. PubMed ID: 1382460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions.
    Das D; Roy S; Mitra RN; Dasgupta A; Das PK
    Chemistry; 2005 Aug; 11(17):4881-9. PubMed ID: 15977280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse enzyme synthesis in microemulsion-based organo-gels.
    Rees GD; da Graca Nascimento M; Jenta TR; Robinson BH
    Biochim Biophys Acta; 1991 Apr; 1073(3):493-501. PubMed ID: 1707672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions.
    Roy S; Dasgupta A; Das PK
    Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microemulsions in lipase-catalyzed hydrolysis reactions.
    Lopez F; Cinelli G; Colella M; De Leonardis A; Palazzo G; Ambrosone L
    Biotechnol Prog; 2014; 30(2):360-6. PubMed ID: 24585724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants.
    Yamada Y; Kuboi R; Komasawa I
    Biotechnol Prog; 1993; 9(5):468-72. PubMed ID: 7692888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interesterification and synthesis by Candida cylindracea lipase in microemulsions.
    Bello M; Thomas D; Legoy MD
    Biochem Biophys Res Commun; 1987 Jul; 146(1):361-7. PubMed ID: 3606623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.
    Walde P; Han D; Luisi PL
    Biochemistry; 1993 Apr; 32(15):4029-34. PubMed ID: 7682440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface.
    Shome A; Roy S; Das PK
    Langmuir; 2007 Apr; 23(8):4130-6. PubMed ID: 17348695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of lipase-catalysed ester and lactone synthesis in low-water systems: analysis of optimum water activity.
    Alston MJ; Freedman RB
    Biotechnol Bioeng; 2002 Mar; 77(6):641-50. PubMed ID: 11807759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of additives on lipase immobilization in microemulsion-based organogels.
    Zhang WW; Wang N; Zhang L; Wu WX; Hu CL; Yu XQ
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3128-40. PubMed ID: 24497044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Esterification of octanoic acid with 1-octanol catalyzed by lipase in W/O microemulsions and in microemulsion-based organogels].
    Zhou GW; Huang XR; Li YZ; Li GZ; Hu W
    Sheng Wu Gong Cheng Xue Bao; 2001 Mar; 17(2):224-7. PubMed ID: 11411238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
    Potthoff AP; Haalck L; Spener F
    Biochim Biophys Acta; 1998 Jan; 1389(2):123-31. PubMed ID: 9461253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization.
    Pavlidis IV; Tzafestas K; Stamatis H
    Biotechnol J; 2010 Aug; 5(8):805-12. PubMed ID: 20449844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esterification reactions catalyzed by Chromobacterium viscosum lipase in CTAB-based microemulsion systems.
    Rees GD; Robinson BH
    Biotechnol Bioeng; 1995 Feb; 45(4):344-55. PubMed ID: 18623188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.