These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7544460)
1. Mutational analysis of the reverse transcriptase and ribonuclease H domains of the human foamy virus. Kögel D; Aboud M; Flügel RM Nucleic Acids Res; 1995 Jul; 23(14):2621-5. PubMed ID: 7544460 [TBL] [Abstract][Full Text] [Related]
2. Molecular biological characterization of the human foamy virus reverse transcriptase and ribonuclease H domains. Kögel D; Aboud M; Flügel RM Virology; 1995 Oct; 213(1):97-108. PubMed ID: 7483284 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase. Boyer PL; Stenbak CR; Clark PK; Linial ML; Hughes SH J Virol; 2004 Jun; 78(12):6112-21. PubMed ID: 15163704 [TBL] [Abstract][Full Text] [Related]
4. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. Lim D; Orlova M; Goff SP J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040 [TBL] [Abstract][Full Text] [Related]
5. Structural requirements for enzymatic activities of foamy virus protease-reverse transcriptase. Schneider A; Peter D; Schmitt J; Leo B; Richter F; Rösch P; Wöhrl BM; Hartl MJ Proteins; 2014 Mar; 82(3):375-85. PubMed ID: 23966123 [TBL] [Abstract][Full Text] [Related]
6. Determination of the protease cleavage site repertoire--the RNase H but not the RT domain is essential for foamy viral protease activity. Spannaus R; Bodem J Virology; 2014 Apr; 454-455():145-56. PubMed ID: 24725941 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease. Pfrepper KI; Rackwitz HR; Schnölzer M; Heid H; Löchelt M; Flügel RM J Virol; 1998 Sep; 72(9):7648-52. PubMed ID: 9696869 [TBL] [Abstract][Full Text] [Related]
8. Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. Pahl A; Flügel RM J Virol; 1993 Sep; 67(9):5426-34. PubMed ID: 7688824 [TBL] [Abstract][Full Text] [Related]
9. Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer. Mbisa JL; Nikolenko GN; Pathak VK J Virol; 2005 Jan; 79(1):419-27. PubMed ID: 15596835 [TBL] [Abstract][Full Text] [Related]
10. Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. Tisdale M; Schulze T; Larder BA; Moelling K J Gen Virol; 1991 Jan; 72 ( Pt 1)():59-66. PubMed ID: 1703563 [TBL] [Abstract][Full Text] [Related]
11. The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. Löchelt M; Flügel RM J Virol; 1996 Feb; 70(2):1033-40. PubMed ID: 8551561 [TBL] [Abstract][Full Text] [Related]
12. A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Post K; Guo J; Kalman E; Uchida T; Crouch RJ; Levin JG Biochemistry; 1993 Jun; 32(21):5508-17. PubMed ID: 7684924 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. Pahl A; Flügel RM J Biol Chem; 1995 Feb; 270(7):2957-66. PubMed ID: 7852375 [TBL] [Abstract][Full Text] [Related]
14. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360 [TBL] [Abstract][Full Text] [Related]
15. RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Telesnitsky A; Goff SP Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1276-80. PubMed ID: 7679498 [TBL] [Abstract][Full Text] [Related]
16. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504 [TBL] [Abstract][Full Text] [Related]
17. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Leo B; Schweimer K; Rösch P; Hartl MJ; Wöhrl BM Retrovirology; 2012 Sep; 9():73. PubMed ID: 22962864 [TBL] [Abstract][Full Text] [Related]
18. Sequence and comparative structural analysis of the murine leukaemia virus amphotropic strain 4070A RNase H domain. Ey PL; Freeman NL; Bela B; Haese PM; Li P; McInnes JL Arch Virol; 1999; 144(11):2185-99. PubMed ID: 10603172 [TBL] [Abstract][Full Text] [Related]
19. Expression of human foamy virus reverse transcriptase involves a spliced pol mRNA. Jordan I; Enssle J; Güttler E; Mauer B; Rethwilm A Virology; 1996 Oct; 224(1):314-9. PubMed ID: 8862427 [TBL] [Abstract][Full Text] [Related]
20. Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H. Telesnitsky A; Blain SW; Goff SP J Virol; 1992 Feb; 66(2):615-22. PubMed ID: 1370551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]