These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. From sequences to shapes and back: a case study in RNA secondary structures. Schuster P; Fontana W; Stadler PF; Hofacker IL Proc Biol Sci; 1994 Mar; 255(1344):279-84. PubMed ID: 7517565 [TBL] [Abstract][Full Text] [Related]
5. Generic properties of combinatory maps: neutral networks of RNA secondary structures. Reidys C; Stadler PF; Schuster P Bull Math Biol; 1997 Mar; 59(2):339-97. PubMed ID: 9116604 [TBL] [Abstract][Full Text] [Related]
6. Statistics of RNA secondary structures. Fontana W; Konings DA; Stadler PF; Schuster P Biopolymers; 1993 Sep; 33(9):1389-404. PubMed ID: 7691201 [TBL] [Abstract][Full Text] [Related]
7. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure. Waldispühl J; Ponty Y J Comput Biol; 2011 Nov; 18(11):1465-79. PubMed ID: 22035326 [TBL] [Abstract][Full Text] [Related]
8. RNA structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties. Haslinger C; Stadler PF Bull Math Biol; 1999 May; 61(3):437-67. PubMed ID: 17883226 [TBL] [Abstract][Full Text] [Related]
9. Motif frequency and evolutionary search times in RNA populations. Stich M; Manrubia SC J Theor Biol; 2011 Jul; 280(1):117-26. PubMed ID: 21419782 [TBL] [Abstract][Full Text] [Related]
10. Energy landscape of k-point mutants of an RNA molecule. Clote P; Waldispühl J; Behzadi B; Steyaert JM Bioinformatics; 2005 Nov; 21(22):4140-7. PubMed ID: 16159920 [TBL] [Abstract][Full Text] [Related]
11. Topological structure of the space of phenotypes: the case of RNA neutral networks. Aguirre J; Buldú JM; Stich M; Manrubia SC PLoS One; 2011; 6(10):e26324. PubMed ID: 22028856 [TBL] [Abstract][Full Text] [Related]
12. Exploring phenotype space through neutral evolution. Huynen MA J Mol Evol; 1996 Sep; 43(3):165-9. PubMed ID: 8703081 [TBL] [Abstract][Full Text] [Related]
13. Sampled ensemble neutrality as a feature to classify potential structured RNAs. Pei S; Anthony JS; Meyer MM BMC Genomics; 2015 Feb; 16(1):35. PubMed ID: 25649229 [TBL] [Abstract][Full Text] [Related]
14. Prediction of common folding structures of homologous RNAs. Han K; Kim HJ Nucleic Acids Res; 1993 Mar; 21(5):1251-7. PubMed ID: 7681944 [TBL] [Abstract][Full Text] [Related]
15. Pattern generation in molecular evolution: exploitation of the variation in RNA landscapes. Huynen MA; Hogeweg P J Mol Evol; 1994 Jul; 39(1):71-9. PubMed ID: 7520506 [TBL] [Abstract][Full Text] [Related]
16. How are model protein structures distributed in sequence space? Bornberg-Bauer E Biophys J; 1997 Nov; 73(5):2393-403. PubMed ID: 9370433 [TBL] [Abstract][Full Text] [Related]
17. Replication and mutation on neutral networks. Reidys C; Forst CV; Schuster P Bull Math Biol; 2001 Jan; 63(1):57-94. PubMed ID: 11146884 [TBL] [Abstract][Full Text] [Related]
18. An Efficient Dual Sampling Algorithm with Hamming Distance Filtration. Barrett C; He Q; Huang FW; Reidys CM J Comput Biol; 2018 Nov; 25(11):1179-1192. PubMed ID: 30133328 [TBL] [Abstract][Full Text] [Related]
19. Predicting a set of minimal free energy RNA secondary structures common to two sequences. Mathews DH Bioinformatics; 2005 May; 21(10):2246-53. PubMed ID: 15731207 [TBL] [Abstract][Full Text] [Related]
20. New structural variation in evolutionary searches of RNA neutral networks. Sumedha ; Martin OC; Wagner A Biosystems; 2007; 90(2):475-85. PubMed ID: 17276586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]