These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 7544889)
1. Targeting pyrimidine single strands by triplex formation: structural optimization of binding. Vo T; Wang S; Kool ET Nucleic Acids Res; 1995 Aug; 23(15):2937-44. PubMed ID: 7544889 [TBL] [Abstract][Full Text] [Related]
2. Strong binding of single-stranded DNA by stem-loop oligonucleotides. D'Souza DJ; Kool ET J Biomol Struct Dyn; 1992 Aug; 10(1):141-52. PubMed ID: 1418737 [TBL] [Abstract][Full Text] [Related]
3. Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides. Wang S; Friedman AE; Kool ET Biochemistry; 1995 Aug; 34(30):9774-84. PubMed ID: 7542923 [TBL] [Abstract][Full Text] [Related]
4. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Wang S; Kool ET Nucleic Acids Res; 1994 Jun; 22(12):2326-33. PubMed ID: 7518582 [TBL] [Abstract][Full Text] [Related]
5. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
6. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes. Kandimalla ER; Manning A; Agrawal S J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564 [TBL] [Abstract][Full Text] [Related]
7. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Miller PS; Bi G; Kipp SA; Fok V; DeLong RK Nucleic Acids Res; 1996 Feb; 24(4):730-6. PubMed ID: 8604317 [TBL] [Abstract][Full Text] [Related]
8. Targeting of single-stranded DNA and RNA containing adjacent pyrimidine and purine tracts by triple helix formation with circular and clamp oligonucleotides. Maksimenko AV; Volkov EM; Bertrand JR; Porumb H; Malvy C; Shabarova ZA; Gottikh MB Eur J Biochem; 2000 Jun; 267(12):3592-603. PubMed ID: 10848976 [TBL] [Abstract][Full Text] [Related]
9. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties. Kandimalla ER; Agrawal S Gene; 1994 Nov; 149(1):115-21. PubMed ID: 7525410 [TBL] [Abstract][Full Text] [Related]
10. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies. Kandimalla ER; Agrawal S Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484 [TBL] [Abstract][Full Text] [Related]
12. Distamycin A complexation with a nucleic acid triple helix. Durand M; Maurizot JC Biochemistry; 1996 Jul; 35(28):9133-9. PubMed ID: 8703918 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
14. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Pilch DS; Levenson C; Shafer RH Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618 [TBL] [Abstract][Full Text] [Related]
15. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation. Han H; Dervan PB Proc Natl Acad Sci U S A; 1993 May; 90(9):3806-10. PubMed ID: 7683407 [TBL] [Abstract][Full Text] [Related]
16. Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with Sp1 and a pyrimidine single strand DNA-binding protein. Chen S; Supakar PC; Vellanoweth RL; Song CS; Chatterjee B; Roy AK Mol Endocrinol; 1997 Jan; 11(1):3-15. PubMed ID: 8994183 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
18. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives. Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007 [TBL] [Abstract][Full Text] [Related]
19. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains. Durand M; Peloille S; Thuong NT; Maurizot JC Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706 [TBL] [Abstract][Full Text] [Related]
20. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex. Gondeau C; Maurizot JC; Durand M Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]