These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 7544889)
21. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure. Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024 [TBL] [Abstract][Full Text] [Related]
22. Relative stabilities of triple helices composed of combinations of DNA, RNA and 2'-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes. Wang S; Kool ET Nucleic Acids Res; 1995 Apr; 23(7):1157-64. PubMed ID: 7537873 [TBL] [Abstract][Full Text] [Related]
23. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. Radhakrishnan I; de los Santos C; Patel DJ J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059 [TBL] [Abstract][Full Text] [Related]
25. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target. Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700 [TBL] [Abstract][Full Text] [Related]
26. Spectroscopic investigation of an intramolecular DNA triplex containing both G.G:C and T.A:T triads and its complex with netropsin. Gondeau C; Maurizot JC; Durand M J Biomol Struct Dyn; 1998 Jun; 15(6):1133-45. PubMed ID: 9669558 [TBL] [Abstract][Full Text] [Related]
27. Identification of a triplex DNA-binding protein from human cells. Guieysse AL; Praseuth D; Hélène C J Mol Biol; 1997 Mar; 267(2):289-98. PubMed ID: 9096226 [TBL] [Abstract][Full Text] [Related]
28. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
29. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides. Kukreti S; Sun JS; Garestier T; Hélène C Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456 [TBL] [Abstract][Full Text] [Related]
30. Single strand targeted triplex formation: strand displacement of duplex DNA by foldback triplex-forming oligonucleotides. Kandimalla ER; Manning AN; Agrawal S J Biomol Struct Dyn; 1995 Dec; 13(3):483-91. PubMed ID: 8825728 [TBL] [Abstract][Full Text] [Related]
31. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand. Fox KR; Flashman E; Gowers D Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990 [TBL] [Abstract][Full Text] [Related]
32. Exclusion of RNA strands from a purine motif triple helix. Semerad CL; Maher LJ Nucleic Acids Res; 1994 Dec; 22(24):5321-5. PubMed ID: 7529405 [TBL] [Abstract][Full Text] [Related]
33. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Kandimalla ER; Agrawal S Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368 [TBL] [Abstract][Full Text] [Related]
34. Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation. Cheng AJ; Van Dyke MW Nucleic Acids Res; 1994 Nov; 22(22):4742-7. PubMed ID: 7984426 [TBL] [Abstract][Full Text] [Related]
35. Strand displacement of double-stranded DNA by triplex-forming antiparallel purine-hairpins. Coma S; Noé V; Eritja R; Ciudad CJ Oligonucleotides; 2005 Dec; 15(4):269-83. PubMed ID: 16396621 [TBL] [Abstract][Full Text] [Related]
36. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes. Booher MA; Wang S; Kool ET Biochemistry; 1994 Apr; 33(15):4645-51. PubMed ID: 8161521 [TBL] [Abstract][Full Text] [Related]
37. NMR characterisation of a triple stranded complex formed by homo-purine and homo-pyrimidine DNA strands at 1:1 molar ratio and acidic pH. Bhaumik SR; Chary KV; Govil G; Liu K; Miles HT Nucleic Acids Res; 1995 Oct; 23(20):4116-21. PubMed ID: 7479074 [TBL] [Abstract][Full Text] [Related]
38. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Faucon B; Mergny JL; Héléne C Nucleic Acids Res; 1996 Aug; 24(16):3181-8. PubMed ID: 8774898 [TBL] [Abstract][Full Text] [Related]
39. Stabilities of nucleotide loops bridging the pyrimidine strands in DNA pyrimidine.purine.pyrimidine triplexes: special stability of the CTTTG loop. Wang S; Booher MA; Kool ET Biochemistry; 1994 Apr; 33(15):4639-44. PubMed ID: 8161520 [TBL] [Abstract][Full Text] [Related]
40. Structural Optimization of Non-Nucleotide Loop Replacements for Duplex and Triplex DNAs. Rumney S; Kool ET J Am Chem Soc; 1995; 117():5635-5646. PubMed ID: 20871801 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]