BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7545070)

  • 1. A slippery grip.
    Fedor MJ
    Nat Struct Biol; 1994 May; 1(5):267-9. PubMed ID: 7545070
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis of tRNA discrimination as derived from the high resolution crystal structure of glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
    Steitz TA; Rould MA; Perona JJ
    Mol Biol Rep; 1990; 14(2-3):213-4. PubMed ID: 2194108
    [No Abstract]   [Full Text] [Related]  

  • 3. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.
    Campanacci V; Dubois DY; Becker HD; Kern D; Spinelli S; Valencia C; Pagot F; Salomoni A; Grisel S; Vincentelli R; Bignon C; Lapointe J; Giegé R; Cambillau C
    J Mol Biol; 2004 Mar; 337(2):273-83. PubMed ID: 15003446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charging two for the price of one.
    Francklyn CS
    Nat Struct Biol; 2001 Mar; 8(3):189-91. PubMed ID: 11224555
    [No Abstract]   [Full Text] [Related]  

  • 5. An RNA pocket for an aliphatic hydrophobe.
    Majerfeld I; Yarus M
    Nat Struct Biol; 1994 May; 1(5):287-92. PubMed ID: 7545073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide models of the Tat-TAR protein-RNA interaction.
    Frankel AD
    Protein Sci; 1992 Dec; 1(12):1539-42. PubMed ID: 1304886
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of zinc in tRNA-acceptor stem binding by glutamyl-tRNA synthetase from E.coli: a molecular modeling study.
    Bothra AK; Roy S; Mandal C; Mukhophadhyay C
    J Biomol Struct Dyn; 1997 Aug; 15(1):19-25. PubMed ID: 9283975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major identity determinants in the "augmented D helix" of tRNA(Glu) from Escherichia coli.
    Sekine S; Nureki O; Sakamoto K; Niimi T; Tateno M; Go M; Kohno T; Brisson A; Lapointe J; Yokoyama S
    J Mol Biol; 1996 Mar; 256(4):685-700. PubMed ID: 8642591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein.
    Aboul-ela F; Karn J; Varani G
    J Mol Biol; 1995 Oct; 253(2):313-32. PubMed ID: 7563092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer RNA and the formation of the heme and chlorophyll precursor, 5-aminolevulinic acid.
    O'Neill GP; Söll D
    Biofactors; 1990 Oct; 2(4):227-35. PubMed ID: 2282139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional structure model of the complex of glutamyl-tRNA synthetase and its cognate tRNA.
    Tateno M; Nureki O; Sekine S; Kaneda K; Go M; Yokoyama S
    FEBS Lett; 1995 Dec; 377(1):77-81. PubMed ID: 8543024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase.
    Sylvers LA; Rogers KC; Shimizu M; Ohtsuka E; Söll D
    Biochemistry; 1993 Apr; 32(15):3836-41. PubMed ID: 8385989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases.
    Rould MA; Perona JJ; Steitz TA
    Acta Crystallogr A; 1992 Sep; 48 ( Pt 5)():751-6. PubMed ID: 1445683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of human glutaminyl-tRNA synthetase to a specific site of its mRNA.
    Schray B; Knippers R
    Nucleic Acids Res; 1991 Oct; 19(19):5307-12. PubMed ID: 1923815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications.
    Blais SP; Kornblatt JA; Barbeau X; Bonnaure G; Lagüe P; Chênevert R; Lapointe J
    PLoS One; 2015; 10(4):e0121043. PubMed ID: 25860020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA.
    Rogers MJ; Söll D
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6627-31. PubMed ID: 3045821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34.
    Madore E; Florentz C; Giegé R; Sekine S; Yokoyama S; Lapointe J
    Eur J Biochem; 1999 Dec; 266(3):1128-35. PubMed ID: 10583410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS.
    Dasgupta S; Manna D; Basu G
    FEBS Lett; 2012 Jun; 586(12):1724-30. PubMed ID: 22584057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for unfolding of the single-stranded GCCA 3'-End of a tRNA on its aminoacyl-tRNA synthetase from a stacked helical to a foldback conformation.
    Madore E; Lipman RS; Hou YM; Lapointe J
    Biochemistry; 2000 Jun; 39(23):6791-8. PubMed ID: 10841758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tRNA(Glu) that uncouples protein and tetrapyrrole biosynthesis.
    Levicán G; Katz A; Valenzuela P; Söll D; Orellana O
    FEBS Lett; 2005 Nov; 579(28):6383-7. PubMed ID: 16271718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.