These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7545070)

  • 21. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Architectures of class-defining and specific domains of glutamyl-tRNA synthetase.
    Nureki O; Vassylyev DG; Katayanagi K; Shimizu T; Sekine S; Kigawa T; Miyazawa T; Yokoyama S; Morikawa K
    Science; 1995 Mar; 267(5206):1958-65. PubMed ID: 7701318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA codewords and protein synthesis, 8. Nucleotide sequences of synonym codons for arginine, valine, cysteine, and alanine.
    Brimacombe R; Trupin J; Nirenberg M; Leder P; Bernfield M; Jaouni T
    Proc Natl Acad Sci U S A; 1965 Sep; 54(3):954-60. PubMed ID: 5324401
    [No Abstract]   [Full Text] [Related]  

  • 24. E. coli glutamyl-tRNA synthetase is inhibited by anticodon stem-loop domains and a minihelix.
    Gustilo EM; Dubois DY; Lapointe J; Agris PF
    RNA Biol; 2007 Jul; 4(2):85-92. PubMed ID: 17671438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase.
    Sekine S; Nureki O; Shimada A; Vassylyev DG; Yokoyama S
    Nat Struct Biol; 2001 Mar; 8(3):203-6. PubMed ID: 11224561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamylsulfamoyladenosine and pyroglutamylsulfamoyladenosine are competitive inhibitors of E. coli glutamyl-tRNA synthetase.
    Bernier S; Dubois DY; Habegger-Polomat C; Gagnon LP; Lapointe J; Chênevert R
    J Enzyme Inhib Med Chem; 2005 Feb; 20(1):61-7. PubMed ID: 15895686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli.
    Gardina PJ; Bormans AF; Manson MD
    Mol Microbiol; 1998 Sep; 29(5):1147-54. PubMed ID: 9767583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aminoacylation of hypomodified tRNAGlu in vivo.
    Krüger MK; Sørensen MA
    J Mol Biol; 1998 Dec; 284(3):609-20. PubMed ID: 9826502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling across membranes: a one and a two and a..
    Stock J
    Science; 1996 Oct; 274(5286):370-1. PubMed ID: 8927993
    [No Abstract]   [Full Text] [Related]  

  • 30. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S; Saha R; Dey C; Banerjee R; Roy S; Basu G
    FEBS Lett; 2009 Jun; 583(12):2114-20. PubMed ID: 19481543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand binding induces an asymmetrical transmembrane signal through a receptor dimer.
    Yang Y; Park H; Inouye M
    J Mol Biol; 1993 Jul; 232(2):493-8. PubMed ID: 8393938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptor signaling: dimerization and beyond.
    Stock J
    Curr Biol; 1996 Jul; 6(7):825-7. PubMed ID: 8835862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR evidence for a base triple in the HIV-2 TAR C-G.C+ mutant-argininamide complex.
    Brodsky AS; Erlacher HA; Williamson JR
    Nucleic Acids Res; 1998 Apr; 26(8):1991-5. PubMed ID: 9518494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii.
    Jahn D
    FEBS Lett; 1992 Dec; 314(1):77-80. PubMed ID: 1451806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide.
    Saneyoshi M; Nishimura S
    Biochim Biophys Acta; 1971 Aug; 246(1):123-31. PubMed ID: 4941745
    [No Abstract]   [Full Text] [Related]  

  • 38. A truncated aminoacyl-tRNA synthetase modifies RNA.
    Salazar JC; Ambrogelly A; Crain PF; McCloskey JA; Söll D
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7536-41. PubMed ID: 15096612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
    Sherman JM; Rogers MJ; Söll D
    Nucleic Acids Res; 1992 Jun; 20(11):2847-52. PubMed ID: 1377381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity.
    Graindorge JS; Senger B; Tritch D; Simos G; Fasiolo F
    Biochemistry; 2005 Feb; 44(4):1344-52. PubMed ID: 15667228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.