BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7546215)

  • 1. Vanadium (IV) inhibits calmodulin-stimulated skeletal muscle myosin light chain kinase activity.
    Parra-Diaz D; Echegoyen L; Zot HG; Puett D
    Biofactors; 1995 May; 5(1):25-8. PubMed ID: 7546215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of phosphorylated myosin light chain kinase on the ATP-dependent actin-myosin interaction.
    Samizo K; Okagaki T; Kohama K
    Biochem Biophys Res Commun; 1999 Jul; 261(1):95-9. PubMed ID: 10405329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase.
    Davis HW; Crimmins DL; Thoma RS; Garcia JG
    Arch Biochem Biophys; 1996 Aug; 332(1):101-9. PubMed ID: 8806714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of calmodulin-activated smooth-muscle myosin light-chain kinase by calmodulin-binding peptides and fluorescent (phosphodiesterase-activating) calmodulin derivatives.
    Török K; Cowley DJ; Brandmeier BD; Howell S; Aitken A; Trentham DR
    Biochemistry; 1998 Apr; 37(17):6188-98. PubMed ID: 9558358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of vanadium (IV) to the phosphatase calcineurin.
    Parra-Diaz D; Wei Q; Lee EY; Echegoyen L; Puett D
    FEBS Lett; 1995 Nov; 376(1-2):58-60. PubMed ID: 8521966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.
    Findlay WA; Gradwell MJ; Bayley PM
    Protein Sci; 1995 Nov; 4(11):2375-82. PubMed ID: 8563635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
    Ohki S; Ikura M; Zhang M
    Biochemistry; 1997 Apr; 36(14):4309-16. PubMed ID: 9100027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adipocyte cyclic nucleotide phosphodiesterase activation by vanadate.
    Souness JE; Thompson WJ; Strada SJ
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(4):383-96. PubMed ID: 2993388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers.
    Yang Z; Stull JT; Levine RJ; Sweeney HL
    J Struct Biol; 1998; 122(1-2):139-48. PubMed ID: 9724615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
    Yuan T; Walsh MP; Sutherland C; Fabian H; Vogel HJ
    Biochemistry; 1999 Feb; 38(5):1446-55. PubMed ID: 9931009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a phosphorylation site on skeletal muscle myosin light chain kinase that becomes phosphorylated during muscle contraction.
    Haydon CE; Watt PW; Morrice N; Knebel A; Gaestel M; Cohen P
    Arch Biochem Biophys; 2002 Jan; 397(2):224-31. PubMed ID: 11795875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of myosin light chain kinase and nitric oxide synthase activities by engineered calmodulins with duplicated or exchanged EF hand pairs.
    Persechini A; Gansz KJ; Paresi RJ
    Biochemistry; 1996 Jan; 35(1):224-8. PubMed ID: 8555178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin.
    Browne JP; Strom M; Martin SR; Bayley PM
    Biochemistry; 1997 Aug; 36(31):9550-61. PubMed ID: 9236001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further insights into calmodulin-myosin light chain kinase interaction from solution scattering and shape restoration.
    Heller WT; Krueger JK; Trewhella J
    Biochemistry; 2003 Sep; 42(36):10579-88. PubMed ID: 12962481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial characterization of a rabbit liver Ca(2+)-calmodulin-dependent kinase with myosin light chain phosphorylating activity.
    Ueno T; Takano-Ohmuro H; Kohama K; Watanabe S; Endo M; Sato N; Kominami E
    Biochem Mol Biol Int; 1993 Apr; 29(6):1145-52. PubMed ID: 8392418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase.
    Krueger JK; Zhi G; Stull JT; Trewhella J
    Biochemistry; 1998 Oct; 37(40):13997-4004. PubMed ID: 9760234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of a monoclonal antibody directed to the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase.
    Nunnally MH; Blumenthal DK; Krebs EG; Stull JT
    Biochemistry; 1987 Sep; 26(18):5885-90. PubMed ID: 2445376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of a weak magnetic field in the paramagnetic resonance mode on the rate of the calmodulin-dependent phosphorylation of myosin in solution].
    Shuvalova LA; Ostrovskaia MV; Sosunov EA; Lednev VV
    Dokl Akad Nauk SSSR; 1991; 317(1):227-30. PubMed ID: 1651220
    [No Abstract]   [Full Text] [Related]  

  • 19. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase.
    Szymanska G; O'Connor MB; O'Connor CM
    Anal Biochem; 1997 Oct; 252(1):96-105. PubMed ID: 9324946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences.
    Martin SR; Masino L; Bayley PM
    Protein Sci; 2000 Dec; 9(12):2477-88. PubMed ID: 11206069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.