These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inhibitory effect of phosphorylated myosin light chain kinase on the ATP-dependent actin-myosin interaction. Samizo K; Okagaki T; Kohama K Biochem Biophys Res Commun; 1999 Jul; 261(1):95-9. PubMed ID: 10405329 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of calmodulin in the first calcium-binding pocket by myosin light chain kinase. Davis HW; Crimmins DL; Thoma RS; Garcia JG Arch Biochem Biophys; 1996 Aug; 332(1):101-9. PubMed ID: 8806714 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of calmodulin-activated smooth-muscle myosin light-chain kinase by calmodulin-binding peptides and fluorescent (phosphodiesterase-activating) calmodulin derivatives. Török K; Cowley DJ; Brandmeier BD; Howell S; Aitken A; Trentham DR Biochemistry; 1998 Apr; 37(17):6188-98. PubMed ID: 9558358 [TBL] [Abstract][Full Text] [Related]
5. Binding of vanadium (IV) to the phosphatase calcineurin. Parra-Diaz D; Wei Q; Lee EY; Echegoyen L; Puett D FEBS Lett; 1995 Nov; 376(1-2):58-60. PubMed ID: 8521966 [TBL] [Abstract][Full Text] [Related]
6. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin. Findlay WA; Gradwell MJ; Bayley PM Protein Sci; 1995 Nov; 4(11):2375-82. PubMed ID: 8563635 [TBL] [Abstract][Full Text] [Related]
7. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin. Ohki S; Ikura M; Zhang M Biochemistry; 1997 Apr; 36(14):4309-16. PubMed ID: 9100027 [TBL] [Abstract][Full Text] [Related]
8. Adipocyte cyclic nucleotide phosphodiesterase activation by vanadate. Souness JE; Thompson WJ; Strada SJ J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(4):383-96. PubMed ID: 2993388 [TBL] [Abstract][Full Text] [Related]
9. Changes in interfilament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas fibers. Yang Z; Stull JT; Levine RJ; Sweeney HL J Struct Biol; 1998; 122(1-2):139-48. PubMed ID: 9724615 [TBL] [Abstract][Full Text] [Related]
10. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin. Yuan T; Walsh MP; Sutherland C; Fabian H; Vogel HJ Biochemistry; 1999 Feb; 38(5):1446-55. PubMed ID: 9931009 [TBL] [Abstract][Full Text] [Related]
11. Identification of a phosphorylation site on skeletal muscle myosin light chain kinase that becomes phosphorylated during muscle contraction. Haydon CE; Watt PW; Morrice N; Knebel A; Gaestel M; Cohen P Arch Biochem Biophys; 2002 Jan; 397(2):224-31. PubMed ID: 11795875 [TBL] [Abstract][Full Text] [Related]
12. Activation of myosin light chain kinase and nitric oxide synthase activities by engineered calmodulins with duplicated or exchanged EF hand pairs. Persechini A; Gansz KJ; Paresi RJ Biochemistry; 1996 Jan; 35(1):224-8. PubMed ID: 8555178 [TBL] [Abstract][Full Text] [Related]
13. The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin. Browne JP; Strom M; Martin SR; Bayley PM Biochemistry; 1997 Aug; 36(31):9550-61. PubMed ID: 9236001 [TBL] [Abstract][Full Text] [Related]
14. Further insights into calmodulin-myosin light chain kinase interaction from solution scattering and shape restoration. Heller WT; Krueger JK; Trewhella J Biochemistry; 2003 Sep; 42(36):10579-88. PubMed ID: 12962481 [TBL] [Abstract][Full Text] [Related]
15. Partial characterization of a rabbit liver Ca(2+)-calmodulin-dependent kinase with myosin light chain phosphorylating activity. Ueno T; Takano-Ohmuro H; Kohama K; Watanabe S; Endo M; Sato N; Kominami E Biochem Mol Biol Int; 1993 Apr; 29(6):1145-52. PubMed ID: 8392418 [TBL] [Abstract][Full Text] [Related]
16. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase. Krueger JK; Zhi G; Stull JT; Trewhella J Biochemistry; 1998 Oct; 37(40):13997-4004. PubMed ID: 9760234 [TBL] [Abstract][Full Text] [Related]
17. Properties of a monoclonal antibody directed to the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase. Nunnally MH; Blumenthal DK; Krebs EG; Stull JT Biochemistry; 1987 Sep; 26(18):5885-90. PubMed ID: 2445376 [TBL] [Abstract][Full Text] [Related]
18. [The effect of a weak magnetic field in the paramagnetic resonance mode on the rate of the calmodulin-dependent phosphorylation of myosin in solution]. Shuvalova LA; Ostrovskaia MV; Sosunov EA; Lednev VV Dokl Akad Nauk SSSR; 1991; 317(1):227-30. PubMed ID: 1651220 [No Abstract] [Full Text] [Related]
19. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase. Szymanska G; O'Connor MB; O'Connor CM Anal Biochem; 1997 Oct; 252(1):96-105. PubMed ID: 9324946 [TBL] [Abstract][Full Text] [Related]
20. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Martin SR; Masino L; Bayley PM Protein Sci; 2000 Dec; 9(12):2477-88. PubMed ID: 11206069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]