These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7546299)

  • 1. A functional role for REM sleep in brain maturation.
    Marks GA; Shaffery JP; Oksenberg A; Speciale SG; Roffwarg HP
    Behav Brain Res; 1995; 69(1-2):1-11. PubMed ID: 7546299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens.
    Shaffery JP; Roffwarg HP; Speciale SG; Marks GA
    Brain Res Dev Brain Res; 1999 Apr; 114(1):109-19. PubMed ID: 10209248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal activity in the lateral geniculate nucleus associated with ponto-geniculo-occipital waves lacks lamina specificity.
    Marks GA; Roffwarg HP; Shaffery JP
    Brain Res; 1999 Jan; 815(1):21-8. PubMed ID: 9974118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells.
    Datta S; Hobson JA
    Neuroscience; 1995 Aug; 67(3):703-12. PubMed ID: 7675196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid eye movement sleep deprivation in kittens amplifies LGN cell-size disparity induced by monocular deprivation.
    Oksenberg A; Shaffery JP; Marks GA; Speciale SG; Mihailoff G; Roffwarg HP
    Brain Res Dev Brain Res; 1996 Nov; 97(1):51-61. PubMed ID: 8946054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep.
    Sanford LD; Silvestri AJ; Ross RJ; Morrison AR
    Arch Ital Biol; 2001 Apr; 139(3):169-83. PubMed ID: 11330199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phasic activity of the basolateral amygdala, cingulate gyrus, and hippocampus during REM sleep in the cat.
    Calvo JM; Fernández-Guardiola A
    Sleep; 1984; 7(3):202-10. PubMed ID: 6484425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons.
    Lim AS; Lozano AM; Moro E; Hamani C; Hutchison WD; Dostrovsky JO; Lang AE; Wennberg RA; Murray BJ
    Sleep; 2007 Jul; 30(7):823-7. PubMed ID: 17682651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sharply contoured theta waves are the human correlate of ponto-geniculo-occipital waves in the primary visual cortex.
    Frauscher B; Joshi S; von Ellenrieder N; Nguyen DK; Dubeau F; Gotman J
    Clin Neurophysiol; 2018 Aug; 129(8):1526-1533. PubMed ID: 29807231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep in brain development.
    Peirano PD; Algarín CR
    Biol Res; 2007; 40(4):471-8. PubMed ID: 18575679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elicited pontogeniculooccipital waves and phasic suppression of diaphragm activity in sleep and wakefulness.
    Hunt WK; Sanford LD; Ross RJ; Morrison AR; Pack AI
    J Appl Physiol (1985); 1998 Jun; 84(6):2106-14. PubMed ID: 9609806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-locking of spontaneous and elicited ponto-geniculo-occipital waves is associated with acceleration of hippocampal theta waves during rapid eye movement sleep in cats.
    Karashima A; Nakamura K; Sato N; Nakao M; Katayama N; Yamamoto M
    Brain Res; 2002 Dec; 958(2):347-58. PubMed ID: 12470871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arousal thresholds during human tonic and phasic REM sleep.
    Ermis U; Krakow K; Voss U
    J Sleep Res; 2010 Sep; 19(3):400-6. PubMed ID: 20477954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid eye movement (REM) sleep and ponto-geniculo-occipital (PGO) spike density are increased by somatic stimulation.
    Arankowsky-Sandoval G; Aguilar-Roblero R; Prospéro-García O; Drucker-Colín R
    Brain Res; 1987 Jan; 400(1):155-8. PubMed ID: 3815063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity in the caudolateral peribrachial pons: relationship to PGO waves and rapid eye movements.
    Datta S; Hobson JA
    J Neurophysiol; 1994 Jan; 71(1):95-109. PubMed ID: 8158244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep.
    Karashima A; Nakao M; Katayama N; Honda K
    Brain Res; 2005 Jul; 1051(1-2):50-6. PubMed ID: 15982642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesion of the ponto-geniculo-occipital pathways in kittens. I. Effects on sleep and on unitary discharge of the lateral geniculate nucleus.
    Davenne D; Adrien J
    Brain Res; 1987 Apr; 409(1):1-9. PubMed ID: 3580860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A key role for the caudoventral pontine tegmentum in the simultaneous generation of eye saccades in bursts and associated ponto-geniculo-occipital waves during paradoxical sleep in the cat.
    Vanni-Mercier G; Debilly G
    Neuroscience; 1998 Sep; 86(2):571-85. PubMed ID: 9881870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tele-encephalic versus cerebellar control upon ponto-geniculo-occipital waves during paradoxical sleep in the cat.
    Gadea-Ciria M
    Experientia; 1976; 32(7):889-90. PubMed ID: 182521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.