These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 7546301)
1. EEG slow waves and sleep spindles: windows on the sleeping brain. Dijk DJ Behav Brain Res; 1995; 69(1-2):109-16. PubMed ID: 7546301 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Dijk DJ; Hayes B; Czeisler CA Brain Res; 1993 Oct; 626(1-2):190-9. PubMed ID: 8281430 [TBL] [Abstract][Full Text] [Related]
3. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness. Lancel M; van Riezen H; Glatt A Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. Dijk DJ; Czeisler CA J Neurosci; 1995 May; 15(5 Pt 1):3526-38. PubMed ID: 7751928 [TBL] [Abstract][Full Text] [Related]
5. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species. Lancel M Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030 [TBL] [Abstract][Full Text] [Related]
6. The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice. Vyazovskiy VV; Achermann P; Borbély AA; Tobler I Arch Ital Biol; 2004 Jul; 142(4):511-23. PubMed ID: 15493552 [TBL] [Abstract][Full Text] [Related]
7. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes. Burikov AA; Bereshpolova YuI Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501 [TBL] [Abstract][Full Text] [Related]
8. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep. Niethard N; Brodt S; Born J J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082 [TBL] [Abstract][Full Text] [Related]
9. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves. Bernardi G; Avvenuti G; Cataldi J; Lattanzi S; Ricciardi E; Polonara G; Silvestrini M; Siclari F; Fabri M; Bellesi M Brain Commun; 2021; 3(2):fcab108. PubMed ID: 34164621 [TBL] [Abstract][Full Text] [Related]
10. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974 [TBL] [Abstract][Full Text] [Related]
11. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing. Coenen AM Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746 [TBL] [Abstract][Full Text] [Related]
12. The visual scoring of sleep and arousal in infants and children. Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427 [TBL] [Abstract][Full Text] [Related]
13. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles. Castro-Zaballa S; Cavelli M; González J; Monti J; Falconi A; Torterolo P Behav Brain Res; 2019 Feb; 359():28-37. PubMed ID: 30321557 [TBL] [Abstract][Full Text] [Related]
14. Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG. Dijk DJ; Cajochen C J Biol Rhythms; 1997 Dec; 12(6):627-35. PubMed ID: 9406038 [TBL] [Abstract][Full Text] [Related]
15. Functional neuroimaging insights into the physiology of human sleep. Dang-Vu TT; Schabus M; Desseilles M; Sterpenich V; Bonjean M; Maquet P Sleep; 2010 Dec; 33(12):1589-603. PubMed ID: 21120121 [TBL] [Abstract][Full Text] [Related]
17. EEG and sleep in aged hospitalized patients with senile dementia: 24-h recordings. Allen SR; Stähelin HB; Seiler WO; Spiegel R Experientia; 1983 Mar; 39(3):249-55. PubMed ID: 6825789 [TBL] [Abstract][Full Text] [Related]
18. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Ferrarelli F; Peterson MJ; Sarasso S; Riedner BA; Murphy MJ; Benca RM; Bria P; Kalin NH; Tononi G Am J Psychiatry; 2010 Nov; 167(11):1339-48. PubMed ID: 20843876 [TBL] [Abstract][Full Text] [Related]
19. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential. Marshall L; Mölle M; Born J Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954 [TBL] [Abstract][Full Text] [Related]
20. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats. Mallick BN; Thankachan S; Islam F Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]