These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7546315)

  • 21. Clues to the functions of mammalian sleep.
    Siegel JM
    Nature; 2005 Oct; 437(7063):1264-71. PubMed ID: 16251951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow waves, sharp waves, ripples, and REM in sleeping dragons.
    Shein-Idelson M; Ondracek JM; Liaw HP; Reiter S; Laurent G
    Science; 2016 Apr; 352(6285):590-5. PubMed ID: 27126045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What Is REM Sleep?
    Blumberg MS; Lesku JA; Libourel PA; Schmidt MH; Rattenborg NC
    Curr Biol; 2020 Jan; 30(1):R38-R49. PubMed ID: 31910377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pupillary behavior during wakefulness, non-REM sleep, and REM sleep in birds is opposite that of mammals.
    Ungurean G; Martinez-Gonzalez D; Massot B; Libourel PA; Rattenborg NC
    Curr Biol; 2021 Dec; 31(23):5370-5376.e4. PubMed ID: 34670112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intra-"cortical" activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals.
    van der Meij J; Martinez-Gonzalez D; Beckers GJL; Rattenborg NC
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30462347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bird-like propagating brain activity in anesthetized Nile crocodiles.
    Tisdale RK; Lesku JA; Beckers GJL; Rattenborg NC
    Sleep; 2018 Aug; 41(8):. PubMed ID: 29955880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep in a comparative context: Investigating how human sleep differs from sleep in other primates.
    Nunn CL; Samson DR
    Am J Phys Anthropol; 2018 Jul; 166(3):601-612. PubMed ID: 29446072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian sleep.
    Staunton H
    Naturwissenschaften; 2005 May; 92(5):203-20. PubMed ID: 15843983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The echidna manifests typical characteristics of rapid eye movement sleep.
    Nicol SC; Andersen NA; Phillips NH; Berger RJ
    Neurosci Lett; 2000 Mar; 283(1):49-52. PubMed ID: 10729631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. REM and NREM sleep as natural accompaniments of the evolution of warm-bloodedness.
    Lee Kavanau J
    Neurosci Biobehav Rev; 2002 Dec; 26(8):889-906. PubMed ID: 12667495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep in ostrich chicks (Struthio camelus).
    Lyamin OI; Kibalnikov AS; Siegel JM
    Sleep; 2021 May; 44(5):. PubMed ID: 33249508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The European starling (Sturnus vulgaris) shows signs of NREM sleep homeostasis but has very little REM sleep and no REM sleep homeostasis.
    van Hasselt SJ; Rusche M; Vyssotski AL; Verhulst S; Rattenborg NC; Meerlo P
    Sleep; 2020 Jun; 43(6):. PubMed ID: 31863116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms.
    Corner M; van der Togt C
    Neurosci Bull; 2012 Feb; 28(1):25-38. PubMed ID: 22233887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single and Sequential REM sleep episodes in humans: a phylogenetic left-over?
    Esposito MJ; Zamboni G; Natale V; Lucidi F; Devoto A; Violani C
    Neurosci Lett; 2004 Sep; 368(1):52-6. PubMed ID: 15342133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogenetics and the correlates of mammalian sleep: a reappraisal.
    Lesku JA; Roth TC; Rattenborg NC; Amlaner CJ; Lima SL
    Sleep Med Rev; 2008 Jun; 12(3):229-44. PubMed ID: 18403222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wide-spread brain activation and reduced CSF flow during avian REM sleep.
    Ungurean G; Behroozi M; Böger L; Helluy X; Libourel PA; Güntürkün O; Rattenborg NC
    Nat Commun; 2023 Jun; 14(1):3259. PubMed ID: 37277328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.
    Fernandez LMJ; Lecci S; Cardis R; Vantomme G; Béard E; Lüthi A
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28809834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.