BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3240 related articles for article (PubMed ID: 7547188)

  • 1. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.
    Lyng H; Olsen DR; Petersen SB; Rofstad EK
    NMR Biomed; 1995 Apr; 8(2):65-71. PubMed ID: 7547188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.
    Lyng H; Olsen DR; Southon TE; Rofstad EK
    Br J Cancer; 1993 Dec; 68(6):1061-70. PubMed ID: 8260356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P-nuclear magnetic resonance spectroscopy in vivo of four human melanoma xenograft lines: spin-lattice relaxation times.
    Olsen DR; Lyng H; Southon TE; Rofstad EK
    Radiother Oncol; 1994 Jul; 32(1):54-62. PubMed ID: 7938679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P NMR spectroscopy measurements of human ovarian carcinoma xenografts: relationship to tumour volume, growth rate, necrotic fraction and differentiation status.
    Rofstad EK; DeMuth P; Sutherland RM
    Radiother Oncol; 1988 Aug; 12(4):315-26. PubMed ID: 3187070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of tumor reoxygenation following irradiation by 31P magnetic resonance spectroscopy: an experimental study of human melanoma xenografts.
    Olsen DR; Rofstad EK
    Radiother Oncol; 1999 Sep; 52(3):261-7. PubMed ID: 10580874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the chondroitin sulphate proteoglycan molecular complex in six human melanoma xenograft lines studied by flow cytometry and immunohistochemistry.
    Nagelhus TA; Rofstad EK
    Melanoma Res; 1993 Jun; 3(3):187-94. PubMed ID: 7691291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P nuclear magnetic resonance spectroscopy, histology and cytokinetics of a xenografted hypopharynx carcinoma following treatment with cisplatin: comparison in three sublines with increasing resistance.
    Tausch-Treml R; Köpf-Maier P; Baumgart F; Gewiese B; Ziessow D; Scherer H; Wolf KJ
    Br J Cancer; 1991 Sep; 64(3):485-93. PubMed ID: 1911189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.
    Rofstad EK; Eide K; Skøyum R; Hystad ME; Lyng H
    Int J Radiat Biol; 1996 Sep; 70(3):241-9. PubMed ID: 8800195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P NMR spectroscopy in vivo of two murine tumor lines with widely different fractions of radiobiologically hypoxic cells.
    Rofstad EK; Howell RL; DeMuth P; Ceckler TL; Sutherland RM
    Int J Radiat Biol; 1988 Oct; 54(4):635-49. PubMed ID: 2902161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphomonoester is associated with proliferation in human breast cancer: a 31P MRS study.
    Kalra R; Wade KE; Hands L; Styles P; Camplejohn R; Greenall M; Adams GE; Harris AL; Radda GK
    Br J Cancer; 1993 May; 67(5):1145-53. PubMed ID: 8494715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of melanin on phosphorus T1S in human melanoma xenografts studied by 31P MRS.
    Olsen DR; Lyng H; Petersen SB; Rofstad EK
    Magn Reson Imaging; 1995; 13(6):847-52. PubMed ID: 8544656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visibility of phospholipids in 31P NMR spectra of human breast tumours in vivo.
    Lowry M; Porter DA; Twelves CJ; Heasley PE; Smith MA; Richards MA
    NMR Biomed; 1992; 5(1):37-42. PubMed ID: 1550708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracapillary HbO2 saturations in murine tumours and human tumour xenografts measured by cryospectrophotometry: relationship to tumour volume, tumour pH and fraction of radiobiologically hypoxic cells.
    Rofstad EK; Fenton BM; Sutherland RM
    Br J Cancer; 1988 May; 57(5):494-502. PubMed ID: 3395554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-induced changes in phosphorus T1 values in human melanoma xenografts studied by 31P-MRS.
    Olsen DR; Petersen SB; Rofstad EK
    Magn Reson Imaging; 1997; 15(10):1187-92. PubMed ID: 9408139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step-down heating of human melanoma xenografts: effects of the tumour microenvironment.
    Rofstad EK
    Br J Cancer; 1994 Sep; 70(3):453-8. PubMed ID: 8080730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow in six human melanoma xenograft lines with different growth characteristics.
    Lyng H; Skretting A; Rofstad EK
    Cancer Res; 1992 Feb; 52(3):584-92. PubMed ID: 1732046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.
    Jakobsen I; Kaalhus O; Lyng H; Rofstad EK
    Br J Cancer; 1995 Mar; 71(3):456-61. PubMed ID: 7880724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of proliferation activity in human melanoma xenografts by magnetic resonance imaging.
    Olsen G; Lyng H; Tufto I; Solberg K; Bjørnaes I; Rofstad EK
    Magn Reson Imaging; 1999 Apr; 17(3):393-402. PubMed ID: 10195582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation and heat sensitivity of cells from human melanoma xenografts. Lack of correlations with tumour growth parameters.
    Rofstad EK; Brustad T
    Eur J Cancer Clin Oncol; 1983 Mar; 19(3):427-32. PubMed ID: 6683180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue.
    Rofstad EK; Steinsland E; Kaalhus O; Chang YB; Høvik B; Lyng H
    Int J Radiat Biol; 1994 Mar; 65(3):387-401. PubMed ID: 7908318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 162.