These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7547868)

  • 1. Calcium-dependent solvation of the myristoyl group of recoverin.
    Hughes RE; Brzovic PS; Klevit RE; Hurley JB
    Biochemistry; 1995 Sep; 34(36):11410-6. PubMed ID: 7547868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin.
    Ames JB; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Dec; 270(52):30909-13. PubMed ID: 8537345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae.
    Ames JB; Hendricks KB; Strahl T; Huttner IG; Hamasaki N; Thorner J
    Biochemistry; 2000 Oct; 39(40):12149-61. PubMed ID: 11015193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
    Ozawa T; Fukuda M; Nara M; Nakamura A; Komine Y; Kohama K; Umezawa Y
    Biochemistry; 2000 Nov; 39(47):14495-503. PubMed ID: 11087403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.
    Gorczyca WA; Kobiałka M; Kuropatwa M; Kurowska E
    Acta Biochim Pol; 2003; 50(2):367-76. PubMed ID: 12833163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recoverin is a zinc-binding protein.
    Permyakov SE; Cherskaya AM; Wasserman LA; Khokhlova TI; Senin II; Zargarov AA; Zinchenko DV; Zernii EY; Lipkin VM; Philippov PP; Uversky VN; Permyakov EA
    J Proteome Res; 2003; 2(1):51-7. PubMed ID: 12643543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy.
    Desmeules P; Grandbois M; Bondarenko VA; Yamazaki A; Salesse C
    Biophys J; 2002 Jun; 82(6):3343-50. PubMed ID: 12023256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring calcium-induced conformational changes in recoverin by electrospray mass spectrometry.
    Neubert TA; Walsh KA; Hurley JB; Johnson RS
    Protein Sci; 1997 Apr; 6(4):843-50. PubMed ID: 9098894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.