These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 7547876)
1. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Gazit E; Boman A; Boman HG; Shai Y Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876 [TBL] [Abstract][Full Text] [Related]
2. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016 [TBL] [Abstract][Full Text] [Related]
3. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Gazit E; Lee WJ; Brey PT; Shai Y Biochemistry; 1994 Sep; 33(35):10681-92. PubMed ID: 8075068 [TBL] [Abstract][Full Text] [Related]
4. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Oren Z; Shai Y Eur J Biochem; 1996 Apr; 237(1):303-10. PubMed ID: 8620888 [TBL] [Abstract][Full Text] [Related]
5. Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells. Zdybicka-Barabas A; Stączek S; Pawlikowska-Pawlęga B; Mak P; Luchowski R; Skrzypiec K; Mendyk E; Wydrych J; Gruszecki WI; Cytryńska M Amino Acids; 2019 Feb; 51(2):175-191. PubMed ID: 30167962 [TBL] [Abstract][Full Text] [Related]
6. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Oren Z; Shai Y Biochemistry; 1997 Feb; 36(7):1826-35. PubMed ID: 9048567 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial activity of cecropins. Moore AJ; Beazley WD; Bibby MC; Devine DA J Antimicrob Chemother; 1996 Jun; 37(6):1077-89. PubMed ID: 8836811 [TBL] [Abstract][Full Text] [Related]
8. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
9. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide. Mancheño JM; Oñaderra M; Martínez del Pozo A; Díaz-Achirica P; Andreu D; Rivas L; Gavilanes JG Biochemistry; 1996 Jul; 35(30):9892-9. PubMed ID: 8703963 [TBL] [Abstract][Full Text] [Related]
10. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Christensen B; Fink J; Merrifield RB; Mauzerall D Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5072-6. PubMed ID: 2455891 [TBL] [Abstract][Full Text] [Related]
11. Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Strahilevitz J; Mor A; Nicolas P; Shai Y Biochemistry; 1994 Sep; 33(36):10951-60. PubMed ID: 8086412 [TBL] [Abstract][Full Text] [Related]
12. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes. Abraham T; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236 [TBL] [Abstract][Full Text] [Related]
13. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Pillai A; Ueno S; Zhang H; Lee JM; Kato Y Biochem J; 2005 Aug; 390(Pt 1):207-14. PubMed ID: 15850460 [TBL] [Abstract][Full Text] [Related]
14. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
15. Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Oren Z; Shai Y Biochemistry; 2000 May; 39(20):6103-14. PubMed ID: 10821683 [TBL] [Abstract][Full Text] [Related]
16. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Sudheendra US; Dhople V; Datta A; Kar RK; Shelburne CE; Bhunia A; Ramamoorthy A Eur J Med Chem; 2015 Feb; 91():91-9. PubMed ID: 25112689 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial properties and partial cDNA sequences of cecropin-like antibacterial peptides from the common cutworm, Spodoptera litura. Choi CS; Lee IH; Kim E; Kim SI; Kim HR Comp Biochem Physiol C Toxicol Pharmacol; 2000 Mar; 125(3):287-97. PubMed ID: 11790350 [TBL] [Abstract][Full Text] [Related]
18. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers. Hung SC; Wang W; Chan SI; Chen HM Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933 [TBL] [Abstract][Full Text] [Related]
19. The concentration-dependent membrane activity of cecropin A. Silvestro L; Gupta K; Weiser JN; Axelsen PH Biochemistry; 1997 Sep; 36(38):11452-60. PubMed ID: 9298965 [TBL] [Abstract][Full Text] [Related]
20. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]