These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Isomer-specific proteolysis of model substrates: influence that the location of the proline residue exerts on cis/trans specificity. Lin LN; Brandts JF Biochemistry; 1985 Nov; 24(23):6533-8. PubMed ID: 4084535 [TBL] [Abstract][Full Text] [Related]
8. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Carter P; Abrahmsén L; Wells JA Biochemistry; 1991 Jun; 30(25):6142-8. PubMed ID: 2059622 [TBL] [Abstract][Full Text] [Related]
9. Study of secondary specificity of enteropeptidase in comparison with trypsin. Mikhailova AG; Likhareva VV; Vaskovsky BV; Garanin SK; Onoprienko LV; Prudchenko IA; Chikin LD; Rumsh LD Biochemistry (Mosc); 2004 Aug; 69(8):909-17. PubMed ID: 15377272 [TBL] [Abstract][Full Text] [Related]
11. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Graf L; Craik CS; Patthy A; Roczniak S; Fletterick RJ; Rutter WJ Biochemistry; 1987 May; 26(9):2616-23. PubMed ID: 3111531 [TBL] [Abstract][Full Text] [Related]
12. The ways of realization of high specificity and efficiency of enteropeptidase. Mikhailova AG; Likhareva VV; Teich N; Rumsh LD Protein Pept Lett; 2007; 14(3):227-32. PubMed ID: 17346225 [TBL] [Abstract][Full Text] [Related]
13. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues. Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978 [TBL] [Abstract][Full Text] [Related]
14. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants. Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392 [TBL] [Abstract][Full Text] [Related]
15. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen. Pasternak A; Liu X; Lin TY; Hedstrom L Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212 [TBL] [Abstract][Full Text] [Related]
16. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase. Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402 [TBL] [Abstract][Full Text] [Related]
17. Engineering enzyme specificity by "substrate-assisted catalysis". Carter P; Wells JA Science; 1987 Jul; 237(4813):394-9. PubMed ID: 3299704 [TBL] [Abstract][Full Text] [Related]
18. Subcellular localization, substrate specificity and crystallization of duodenase, a potential activator of enteropeptidase. Zamolodchikova TS; Sokolova EA; Alexandrov SL; Mikhaleva II; Prudchenko IA; Morozov IA; Kononenko NV; Mirgorodskaya OA; Da U; Larionova NI; Pozdnev VF; Ghosh D; Duax WL; Vorotyntseva TI Eur J Biochem; 1997 Oct; 249(2):612-21. PubMed ID: 9370374 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. Lu D; Fütterer K; Korolev S; Zheng X; Tan K; Waksman G; Sadler JE J Mol Biol; 1999 Sep; 292(2):361-73. PubMed ID: 10493881 [TBL] [Abstract][Full Text] [Related]
20. Ala226 to Gly and Ser189 to Asp mutations convert rat chymotrypsin B to a trypsin-like protease. Jelinek B; Antal J; Venekei I; Gráf L Protein Eng Des Sel; 2004 Feb; 17(2):127-31. PubMed ID: 15047908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]