These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7547882)

  • 1. Trypsin specificity increased through substrate-assisted catalysis.
    Corey DR; Willett WS; Coombs GS; Craik CS
    Biochemistry; 1995 Sep; 34(36):11521-7. PubMed ID: 7547882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastase substrate specificity tailored through substrate-assisted catalysis and phage display.
    Dall'Acqua W; Halin C; Rodrigues ML; Carter P
    Protein Eng; 1999 Nov; 12(11):981-7. PubMed ID: 10585504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of trypsin activity by Cu2+ chelation of the substrate binding site.
    Briand L; Chobert JM; Tauzin J; Declerck N; Léonil J; Mollé D; Tran V; Haertlé T
    Protein Eng; 1997 May; 10(5):551-60. PubMed ID: 9215573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates.
    McRae BJ; Kurachi K; Heimark RL; Fujikawa K; Davie EW; Powers JC
    Biochemistry; 1981 Dec; 20(25):7196-206. PubMed ID: 6976185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delocalizing trypsin specificity with metal activation.
    Willett WS; Brinen LS; Fletterick RJ; Craik CS
    Biochemistry; 1996 May; 35(19):5992-8. PubMed ID: 8634240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomer-specific proteolysis of model substrates: influence that the location of the proline residue exerts on cis/trans specificity.
    Lin LN; Brandts JF
    Biochemistry; 1985 Nov; 24(23):6533-8. PubMed ID: 4084535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity profiling of human trypsin-isoenzymes.
    Schilling O; Biniossek ML; Mayer B; Elsässer B; Brandstetter H; Goettig P; Stenman UH; Koistinen H
    Biol Chem; 2018 Sep; 399(9):997-1007. PubMed ID: 29883318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'.
    Carter P; Abrahmsén L; Wells JA
    Biochemistry; 1991 Jun; 30(25):6142-8. PubMed ID: 2059622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of secondary specificity of enteropeptidase in comparison with trypsin.
    Mikhailova AG; Likhareva VV; Vaskovsky BV; Garanin SK; Onoprienko LV; Prudchenko IA; Chikin LD; Rumsh LD
    Biochemistry (Mosc); 2004 Aug; 69(8):909-17. PubMed ID: 15377272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calcium ions on enteropeptidase catalysis.
    Mikhailova AG; Likhareva VV; Prudchenko IA; Rumsh LD
    Biochemistry (Mosc); 2005 Oct; 70(10):1129-35. PubMed ID: 16271029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin.
    Graf L; Craik CS; Patthy A; Roczniak S; Fletterick RJ; Rutter WJ
    Biochemistry; 1987 May; 26(9):2616-23. PubMed ID: 3111531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ways of realization of high specificity and efficiency of enteropeptidase.
    Mikhailova AG; Likhareva VV; Teich N; Rumsh LD
    Protein Pept Lett; 2007; 14(3):227-32. PubMed ID: 17346225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants.
    Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS
    Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen.
    Pasternak A; Liu X; Lin TY; Hedstrom L
    Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering enzyme specificity by "substrate-assisted catalysis".
    Carter P; Wells JA
    Science; 1987 Jul; 237(4813):394-9. PubMed ID: 3299704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular localization, substrate specificity and crystallization of duodenase, a potential activator of enteropeptidase.
    Zamolodchikova TS; Sokolova EA; Alexandrov SL; Mikhaleva II; Prudchenko IA; Morozov IA; Kononenko NV; Mirgorodskaya OA; Da U; Larionova NI; Pozdnev VF; Ghosh D; Duax WL; Vorotyntseva TI
    Eur J Biochem; 1997 Oct; 249(2):612-21. PubMed ID: 9370374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide.
    Lu D; Fütterer K; Korolev S; Zheng X; Tan K; Waksman G; Sadler JE
    J Mol Biol; 1999 Sep; 292(2):361-73. PubMed ID: 10493881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ala226 to Gly and Ser189 to Asp mutations convert rat chymotrypsin B to a trypsin-like protease.
    Jelinek B; Antal J; Venekei I; Gráf L
    Protein Eng Des Sel; 2004 Feb; 17(2):127-31. PubMed ID: 15047908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.