BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7547888)

  • 21. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers.
    Cheng KH; Virtanen J; Somerharju P
    Biophys J; 1999 Dec; 77(6):3108-19. PubMed ID: 10585932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for regular distribution of sterols in liquid crystalline phosphatidylcholine bilayers.
    Chong PL
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10069-73. PubMed ID: 7937839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of a fluorescent amphiphile with lipid bilayer vesicles in regions of solid-liquid-disordered phase coexistence.
    Pokorny A; Almeida PF; Vaz WL
    Biophys J; 2001 Mar; 80(3):1384-94. PubMed ID: 11222299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit.
    Parker A; Miles K; Cheng KH; Huang J
    Biophys J; 2004 Mar; 86(3):1532-44. PubMed ID: 14990480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The active metabolite hydroxytamoxifen of the anticancer drug tamoxifen induces structural changes in membranes.
    Custódio JB; Almeida LM; Madeira VM
    Biochim Biophys Acta; 1993 Dec; 1153(2):308-14. PubMed ID: 8274502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior.
    Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G
    Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Jan; 66(1):120-32. PubMed ID: 8130331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry of domains and domain boundaries in monolayers and bilayers.
    Hui SW
    Mol Membr Biol; 1995; 12(1):45-50. PubMed ID: 7767381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2003 May; 84(5):3079-86. PubMed ID: 12719238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes.
    Wang MM; Olsher M; Sugár IP; Chong PL
    Biochemistry; 2004 Mar; 43(8):2159-66. PubMed ID: 14979712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanosecond lipid dynamics in membranes containing cholesterol.
    Armstrong CL; Häussler W; Seydel T; Katsaras J; Rheinstädter MC
    Soft Matter; 2014 Apr; 10(15):2600-11. PubMed ID: 24647350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer.
    Khajeh A; Modarress H
    Biochim Biophys Acta; 2014 Oct; 1838(10):2431-8. PubMed ID: 24911406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Depth-dependent investigation of the apolar zone of lipid membranes using a series of fluorescent probes, Me4-BODIPY-8-labeled phosphatidylcholines].
    Omel'kov AV; Pavlova IuB; Boldyrev IA; Molotkovskiĭ IuG
    Bioorg Khim; 2007; 33(5):544-9. PubMed ID: 18050660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41.
    Oliva R; Emendato A; Vitiello G; De Santis A; Grimaldi M; D'Ursi AM; Busi E; Del Vecchio P; Petraccone L; D'Errico G
    Biochim Biophys Acta; 2016 Aug; 1858(8):1904-13. PubMed ID: 27179640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What determines the thickness of a biological membrane.
    Kucerka N; Nieh MP; Pencer J; Sachs JN; Katsaras J
    Gen Physiol Biophys; 2009 Jun; 28(2):117-25. PubMed ID: 19592708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes.
    Armstrong CL; Barrett MA; Hiess A; Salditt T; Katsaras J; Shi AC; Rheinstädter MC
    Eur Biophys J; 2012 Oct; 41(10):901-13. PubMed ID: 22729214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis.
    Marsan MP; Muller I; Ramos C; Rodriguez F; Dufourc EJ; Czaplicki J; Milon A
    Biophys J; 1999 Jan; 76(1 Pt 1):351-9. PubMed ID: 9876147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.