These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7547896)

  • 21. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of antiparallel and parallel two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization.
    Monera OD; Zhou NE; Kay CM; Hodges RS
    J Biol Chem; 1993 Sep; 268(26):19218-27. PubMed ID: 8366074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From coiled coils to small globular proteins: design of a native-like three-helix bundle.
    Bryson JW; Desjarlais JR; Handel TM; DeGrado WF
    Protein Sci; 1998 Jun; 7(6):1404-14. PubMed ID: 9655345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving coiled-coil stability by optimizing ionic interactions.
    Burkhard P; Ivaninskii S; Lustig A
    J Mol Biol; 2002 May; 318(3):901-10. PubMed ID: 12054832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide.
    Meier M; Lustig A; Aebi U; Burkhard P
    J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.
    Shin D; Kim G; Kim G; Zheng X; Kim YG; Lee S
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):339-46. PubMed ID: 25446089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of parallel and antiparallel coiled-coils controlled by the relative positions of alanine residues in the hydrophobic core.
    Monera OD; Zhou NE; Lavigne P; Kay CM; Hodges RS
    J Biol Chem; 1996 Feb; 271(8):3995-4001. PubMed ID: 8626731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils.
    Su JY; Hodges RS; Kay CM
    Biochemistry; 1994 Dec; 33(51):15501-10. PubMed ID: 7803412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complementation of buried lysine and surface polar residues in a designed heterodimeric coiled coil.
    Campbell KM; Lumb KJ
    Biochemistry; 2002 Jun; 41(22):7169-75. PubMed ID: 12033951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The many types of interhelical ionic interactions in coiled coils - an overview.
    Meier M; Stetefeld J; Burkhard P
    J Struct Biol; 2010 May; 170(2):192-201. PubMed ID: 20211731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity.
    Litowski JR; Hodges RS
    J Biol Chem; 2002 Oct; 277(40):37272-9. PubMed ID: 12138097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins.
    Wagschal K; Tripet B; Lavigne P; Mant C; Hodges RS
    Protein Sci; 1999 Nov; 8(11):2312-29. PubMed ID: 10595534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective formation of AAB- and ABC-type heterotrimeric alpha-helical coiled coils.
    Kiyokawa T; Kanaori K; Tajima K; Kawaguchi M; Mizuno T; Oku J; Tanaka T
    Chemistry; 2004 Jul; 10(14):3548-54. PubMed ID: 15252802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices.
    Dürr E; Jelesarov I; Bosshard HR
    Biochemistry; 1999 Jan; 38(3):870-80. PubMed ID: 9893981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic model for the stabilization of trigonal thiolato mercury(II) in designed three-stranded coiled coils.
    Farrer BT; Harris NP; Balchus KE; Pecoraro VL
    Biochemistry; 2001 Dec; 40(48):14696-705. PubMed ID: 11724584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils.
    Betz SF; DeGrado WF
    Biochemistry; 1996 May; 35(21):6955-62. PubMed ID: 8639647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A.
    Chana M; Tripet BP; Mant CT; Hodges RS
    J Struct Biol; 2002; 137(1-2):206-19. PubMed ID: 12064947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.