These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 7547909)
21. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
22. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Shen AL; Kasper CB Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724 [TBL] [Abstract][Full Text] [Related]
23. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
24. Iron-sulfur cluster cysteine-to-serine mutants of Anabaena -2Fe-2S- ferredoxin exhibit unexpected redox properties and are competent in electron transfer to ferredoxin:NADP+ reductase. Hurley JK; Weber-Main AM; Hodges AE; Stankovich MT; Benning MM; Holden HM; Cheng H; Xia B; Markley JL; Genzor C; Gomez-Moreno C; Hafezi R; Tollin G Biochemistry; 1997 Dec; 36(49):15109-17. PubMed ID: 9398238 [TBL] [Abstract][Full Text] [Related]
25. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
26. The streptococcal flavoprotein NADH oxidase. II. Interactions of pyridine nucleotides with reduced and oxidized enzyme forms. Ahmed SA; Claiborne A J Biol Chem; 1989 Nov; 264(33):19863-70. PubMed ID: 2511196 [TBL] [Abstract][Full Text] [Related]
27. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs. Prongay AJ; Williams CH J Biol Chem; 1990 Nov; 265(31):18968-75. PubMed ID: 2229055 [TBL] [Abstract][Full Text] [Related]
28. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V; Holden MJ; Vilker VL Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648 [TBL] [Abstract][Full Text] [Related]
29. Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Argyrou A; Sun G; Palfey BA; Blanchard JS Biochemistry; 2003 Feb; 42(7):2218-28. PubMed ID: 12590611 [TBL] [Abstract][Full Text] [Related]
31. Measurement of the oxidation-reduction potentials for two-electron and four-electron reduction of lipoamide dehydrogenase from pig heart. Matthews RG; Williams CH J Biol Chem; 1976 Jul; 251(13):3956-64. PubMed ID: 6467 [TBL] [Abstract][Full Text] [Related]
32. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Shaw JP; Harayama S Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782 [TBL] [Abstract][Full Text] [Related]
33. Expression and characterization of a functional canine variant of cytochrome b5 reductase. Roma GW; Crowley LJ; Barber MJ Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740 [TBL] [Abstract][Full Text] [Related]
34. Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials. Hunt J; Massey V; Dunham WR; Sands RH J Biol Chem; 1993 Sep; 268(25):18685-91. PubMed ID: 8395516 [TBL] [Abstract][Full Text] [Related]
35. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation. Mulrooney SB; Williams CH Protein Sci; 1997 Oct; 6(10):2188-95. PubMed ID: 9336841 [TBL] [Abstract][Full Text] [Related]
36. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. Wilkinson KD; Williams CH J Biol Chem; 1981 Mar; 256(5):2307-14. PubMed ID: 7007381 [TBL] [Abstract][Full Text] [Related]
37. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Burns KD; Pieper PA; Liu HW; Stankovich MT Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489 [TBL] [Abstract][Full Text] [Related]
38. Effect of nicotinamide adenine dinucleotide on the oxidation-reduction potentials of lipoamide dehydrogenase from pig heart. Maeda-Yorita K; Aki K J Biochem; 1984 Sep; 96(3):683-90. PubMed ID: 6548741 [TBL] [Abstract][Full Text] [Related]
39. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases. Panda SP; Gao YT; Roman LJ; Martásek P; Salerno JC; Masters BS J Biol Chem; 2006 Nov; 281(45):34246-57. PubMed ID: 16966328 [TBL] [Abstract][Full Text] [Related]
40. Evidence for multiple electronic forms of two-electron-reduced lipoamide dehydrogenase from Escherichia coli. Wilkinson KD; Williams CH J Biol Chem; 1979 Feb; 254(3):852-62. PubMed ID: 33177 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]