These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 7547975)
1. Examining the structural and chemical flexibility of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with unnatural amino acids. Gloss LM; Kirsch JF Biochemistry; 1995 Sep; 34(38):12323-32. PubMed ID: 7547975 [TBL] [Abstract][Full Text] [Related]
2. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3990-8. PubMed ID: 7696264 [TBL] [Abstract][Full Text] [Related]
3. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
4. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue. Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232 [TBL] [Abstract][Full Text] [Related]
6. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265 [TBL] [Abstract][Full Text] [Related]
7. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis. Goldberg JM; Kirsch JF Biochemistry; 1996 Apr; 35(16):5280-91. PubMed ID: 8611515 [TBL] [Abstract][Full Text] [Related]
8. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
9. Contribution to catalysis and stability of the five cysteines in Escherichia coli aspartate aminotransferase. Preparation and properties of a cysteine-free enzyme. Gloss LM; Planas A; Kirsch JF Biochemistry; 1992 Jan; 31(1):32-9. PubMed ID: 1731883 [TBL] [Abstract][Full Text] [Related]
10. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. Jeffery CJ; Gloss LM; Petsko GA; Ringe D Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649 [TBL] [Abstract][Full Text] [Related]
11. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
12. Replacement of active-site lysine-239 of thermostable aspartate aminotransferase by S-(2-aminoethyl)cysteine: properties of the mutant enzyme. Matsushima Y; Kim DW; Yoshimura T; Kuramitsu S; Kagamiyama H; Esaki N; Soda K J Biochem; 1994 Jan; 115(1):108-12. PubMed ID: 8188615 [TBL] [Abstract][Full Text] [Related]
13. Reengineering the catalytic lysine of aspartate aminotransferase by chemical elaboration of a genetically introduced cysteine. Planas A; Kirsch JF Biochemistry; 1991 Aug; 30(33):8268-76. PubMed ID: 1907854 [TBL] [Abstract][Full Text] [Related]
14. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and equilibria for the reactions of coenzymes with wild type and the Y70F mutant of Escherichia coli aspartate aminotransferase. Toney MD; Kirsch JF Biochemistry; 1991 Jul; 30(30):7461-6. PubMed ID: 1677270 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the apparent negative co-operativity induced in Escherichia coli aspartate aminotransferase by the replacement of Asp222 with alanine. Evidence for an extremely slow conformational change. Onuffer JJ; Kirsch JF Protein Eng; 1994 Mar; 7(3):413-24. PubMed ID: 8177890 [TBL] [Abstract][Full Text] [Related]
18. The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase. Yano T; Kuramitsu S; Tanase S; Morino Y; Hiromi K; Kagamiyama H J Biol Chem; 1991 Apr; 266(10):6079-85. PubMed ID: 2007566 [TBL] [Abstract][Full Text] [Related]
19. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
20. Structure of the complex between pyridoxal 5'-phosphate and the tyrosine 225 to phenylalanine mutant of Escherichia coli aspartate aminotransferase determined by isotope-edited classical Raman difference spectroscopy. Goldberg JM; Zheng J; Deng H; Chen YQ; Callender R; Kirsch JF Biochemistry; 1993 Aug; 32(32):8092-7. PubMed ID: 8347609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]