These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 7547988)
1. Site-directed mutagenesis of a serine residue in cinnamyl alcohol dehydrogenase, a plant NADPH-dependent dehydrogenase, affects the specificity for the coenzyme. Lauvergeat V; Kennedy K; Feuillet C; McKie JH; Gorrichon L; Baltas M; Boudet AM; Grima-Pettenati J; Douglas KT Biochemistry; 1995 Sep; 34(38):12426-34. PubMed ID: 7547988 [TBL] [Abstract][Full Text] [Related]
2. A molecular model for cinnamyl alcohol dehydrogenase, a plant aromatic alcohol dehydrogenase involved in lignification. McKie JH; Jaouhari R; Douglas KT; Goffner D; Feuillet C; Grima-Pettenati J; Boudet AM; Baltas M; Gorrichon L Biochim Biophys Acta; 1993 Sep; 1202(1):61-9. PubMed ID: 8373826 [TBL] [Abstract][Full Text] [Related]
3. Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH. Sem DS; Kasper CB Biochemistry; 1993 Nov; 32(43):11548-58. PubMed ID: 8218222 [TBL] [Abstract][Full Text] [Related]
4. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase. Ratnam K; Ma H; Penning TM Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026 [TBL] [Abstract][Full Text] [Related]
5. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Pan H; Zhou R; Louie GV; Mühlemann JK; Bomati EK; Bowman ME; Dudareva N; Dixon RA; Noel JP; Wang X Plant Cell; 2014 Sep; 26(9):3709-27. PubMed ID: 25217505 [TBL] [Abstract][Full Text] [Related]
7. Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala. Pandey B; Pandey VP; Dwivedi UN Protein Expr Purif; 2011 Oct; 79(2):197-203. PubMed ID: 21708267 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Grima-Pettenati J; Feuillet C; Goffner D; Borderies G; Boudet AM Plant Mol Biol; 1993 Mar; 21(6):1085-95. PubMed ID: 8490129 [TBL] [Abstract][Full Text] [Related]
9. Switch of coenzyme specificity of mouse lung carbonyl reductase by substitution of threonine 38 with aspartic acid. Nakanishi M; Matsuura K; Kaibe H; Tanaka N; Nonaka T; Mitsui Y; Hara A J Biol Chem; 1997 Jan; 272(4):2218-22. PubMed ID: 8999926 [TBL] [Abstract][Full Text] [Related]
10. Involvement of two basic residues (Lys-17 and Arg-39) of mouse lung carbonyl reductase in NADP(H)-binding and fatty acid activation: site-directed mutagenesis and kinetic analyses. Nakanishi M; Kakumoto M; Matsuura K; Deyashiki Y; Tanaka N; Nonaka T; Mitsui Y; Hara A J Biochem; 1996 Aug; 120(2):257-63. PubMed ID: 8889808 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from Phaseolus vulgaris. Grima-Pettenati J; Campargue C; Boudet A; Boudet AM Phytochemistry; 1994 Nov; 37(4):941-7. PubMed ID: 7765663 [TBL] [Abstract][Full Text] [Related]
12. Unusual NADPH conformation in the crystal structure of a cinnamyl alcohol dehydrogenase from Helicobacter pylori in complex with NADP(H) and substrate docking analysis. Seo KH; Zhuang N; Chen C; Song JY; Kang HL; Rhee KH; Lee KH FEBS Lett; 2012 Feb; 586(4):337-43. PubMed ID: 22269576 [TBL] [Abstract][Full Text] [Related]
13. Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. Clermont S; Corbier C; Mely Y; Gerard D; Wonacott A; Branlant G Biochemistry; 1993 Sep; 32(38):10178-84. PubMed ID: 8399144 [TBL] [Abstract][Full Text] [Related]
14. The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase. Dean AM; Dvorak L Protein Sci; 1995 Oct; 4(10):2156-67. PubMed ID: 8535253 [TBL] [Abstract][Full Text] [Related]
15. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
16. Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Sciotti M; Wermuth B Chem Biol Interact; 2001 Jan; 130-132(1-3):871-8. PubMed ID: 11306102 [TBL] [Abstract][Full Text] [Related]
17. Role of a cysteine residue in substrate entry and catalysis in MtHIBADH: Analysis by chemical modifications and site-directed mutagenesis. Singh A; Badepally NG; Surolia A IUBMB Life; 2021 Jun; 73(6):855-865. PubMed ID: 33724683 [TBL] [Abstract][Full Text] [Related]
18. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876 [TBL] [Abstract][Full Text] [Related]
19. Binding of NADP Blaise M; Van Wyk N; Banères-Roquet F; Guérardel Y; Kremer L Biochem J; 2017 Mar; 474(6):907-921. PubMed ID: 28126742 [TBL] [Abstract][Full Text] [Related]
20. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases. Kovár J; Klukanová H Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]