These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7547996)

  • 1. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the alpha-subunit.
    Akabas MH; Karlin A
    Biochemistry; 1995 Oct; 34(39):12496-500. PubMed ID: 7547996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the beta subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor.
    Zhang H; Karlin A
    Biochemistry; 1998 Jun; 37(22):7952-64. PubMed ID: 9609688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit.
    Akabas MH; Kaufmann C; Archdeacon P; Karlin A
    Neuron; 1994 Oct; 13(4):919-27. PubMed ID: 7524560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delimiting the binding site for quaternary ammonium lidocaine derivatives in the acetylcholine receptor channel.
    Pascual JM; Karlin A
    J Gen Physiol; 1998 Nov; 112(5):611-21. PubMed ID: 9806969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit.
    Zhang H; Karlin A
    Biochemistry; 1997 Dec; 36(50):15856-64. PubMed ID: 9398318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit.
    Xu M; Akabas MH
    J Gen Physiol; 1996 Feb; 107(2):195-205. PubMed ID: 8833341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method.
    Wilson G; Karlin A
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1241-8. PubMed ID: 11158624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine receptor channel structure probed in cysteine-substitution mutants.
    Akabas MH; Stauffer DA; Xu M; Karlin A
    Science; 1992 Oct; 258(5080):307-10. PubMed ID: 1384130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extracellular linker of muscle acetylcholine receptor channels is a gating control element.
    Grosman C; Salamone FN; Sine SM; Auerbach A
    J Gen Physiol; 2000 Sep; 116(3):327-40. PubMed ID: 10962011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acids lining the channel of the gamma-aminobutyric acid type A receptor identified by cysteine substitution.
    Xu M; Akabas MH
    J Biol Chem; 1993 Oct; 268(29):21505-8. PubMed ID: 7691812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural effects of quinacrine binding in the open channel of the acetylcholine receptor.
    Yu Y; Shi L; Karlin A
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3907-12. PubMed ID: 12644710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants.
    Xu M; Covey DF; Akabas MH
    Biophys J; 1995 Nov; 69(5):1858-67. PubMed ID: 8580329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent accessibility and electrostatic potential in the channel of the acetylcholine receptor. Inferences from rates of reaction of thiosulfonates with substituted cysteines in the M2 segment of the alpha subunit.
    Pascual JM; Karlin A
    J Gen Physiol; 1998 Jun; 111(6):717-39. PubMed ID: 9607933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetry of the rat acetylcholine receptor subunits in the narrow region of the pore.
    Villarroel A; Herlitze S; Witzemann V; Koenen M; Sakmann B
    Proc Biol Sci; 1992 Sep; 249(1326):317-24. PubMed ID: 1279705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the pore structure of the influenza A virus M(2) ion channel by the substituted-cysteine accessibility method.
    Shuck K; Lamb RA; Pinto LH
    J Virol; 2000 Sep; 74(17):7755-61. PubMed ID: 10933681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice.
    Javitch JA; Fu D; Chen J
    Biochemistry; 1995 Dec; 34(50):16433-9. PubMed ID: 8845371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the amino acid residues in the sixth transmembrane domains accessible in the binding-site crevices of mu, delta, and kappa opioid receptors.
    Xu W; Li J; Chen C; Huang P; Weinstein H; Javitch JA; Shi L; de Riel JK; Liu-Chen LY
    Biochemistry; 2001 Jul; 40(27):8018-29. PubMed ID: 11434771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of the cysteine 451 thiol group in the M4 helix of the gamma subunit of Torpedo californica acetylcholine receptor.
    Li L; Schuchard M; Palma A; Pradier L; McNamee MG
    Biochemistry; 1990 Jun; 29(23):5428-36. PubMed ID: 1696834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation.
    McLaughlin JT; Hawrot E; Yellen G
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):765-9. PubMed ID: 7575408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.