These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7548031)
1. Effect of ionic strength on the kinetic mechanism and relative rate limitation of steps in the model NADPH-cytochrome P450 oxidoreductase reaction with cytochrome c. Sem DS; Kasper CB Biochemistry; 1995 Oct; 34(39):12768-74. PubMed ID: 7548031 [TBL] [Abstract][Full Text] [Related]
2. Kinetic mechanism for the model reaction of NADPH-cytochrome P450 oxidoreductase with cytochrome c. Sem DS; Kasper CB Biochemistry; 1994 Oct; 33(40):12012-21. PubMed ID: 7918420 [TBL] [Abstract][Full Text] [Related]
3. Reaction of neuronal nitric-oxide synthase with 2,6-dichloroindolphenol and cytochrome c3+: influence of the electron acceptor and binding of Ca2+-activated calmodulin on the kinetic mechanism. Wolthers KR; Schimerlik MI Biochemistry; 2001 Apr; 40(15):4722-37. PubMed ID: 11294640 [TBL] [Abstract][Full Text] [Related]
4. Role of acidic residues in the interaction of NADPH-cytochrome P450 oxidoreductase with cytochrome P450 and cytochrome c. Shen AL; Kasper CB J Biol Chem; 1995 Nov; 270(46):27475-80. PubMed ID: 7499204 [TBL] [Abstract][Full Text] [Related]
5. Enzyme-substrate binding interactions of NADPH-cytochrome P-450 oxidoreductase characterized with pH and alternate substrate/inhibitor studies. Sem DS; Kasper CB Biochemistry; 1993 Nov; 32(43):11539-47. PubMed ID: 8218221 [TBL] [Abstract][Full Text] [Related]
6. Neuronal nitric oxide synthase: substrate and solvent kinetic isotope effects on the steady-state kinetic parameters for the reduction of 2,6-dichloroindophenol and cytochrome c(3+). Wolthers KR; Schimerlik MI Biochemistry; 2002 Jan; 41(1):196-204. PubMed ID: 11772017 [TBL] [Abstract][Full Text] [Related]
7. The cytochrome P450 2B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge-pairing. Voznesensky AI; Schenkman JB J Biol Chem; 1992 Jul; 267(21):14669-76. PubMed ID: 1321814 [TBL] [Abstract][Full Text] [Related]
8. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Shen AL; Kasper CB Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724 [TBL] [Abstract][Full Text] [Related]
9. A cytosolic flavin-containing enzyme catalyzing reduction of cytochrome c in Trypanosoma cruzi: kinetic studies with cytochrome c as substrate. Kuwahara T; White RA; Agosin M Arch Biochem Biophys; 1985 Aug; 241(1):45-9. PubMed ID: 2992393 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic studies on the reductive half-reaction of NADPH-cytochrome P450 oxidoreductase. Shen AL; Sem DS; Kasper CB J Biol Chem; 1999 Feb; 274(9):5391-8. PubMed ID: 10026149 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the interaction of cytochrome c and mitochondrial ubiquinol-cytochrome c reductase. Speck SH; Margoliash E J Biol Chem; 1984 Jan; 259(2):1064-72. PubMed ID: 6319375 [TBL] [Abstract][Full Text] [Related]
12. Kinetic mechanism of cytochrome P450 reductase from the house fly (Musca domestica). Murataliev MB; Ariño A; Guzov VM; Feyereisen R Insect Biochem Mol Biol; 1999 Mar; 29(3):233-42. PubMed ID: 10319436 [TBL] [Abstract][Full Text] [Related]
13. Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover. Gerencsér L; Laczkó G; Maróti P Biochemistry; 1999 Dec; 38(51):16866-75. PubMed ID: 10606520 [TBL] [Abstract][Full Text] [Related]
14. Control of formation and dissociation of the high-affinity complex between cytochrome c and cytochrome c peroxidase by ionic strength and the low-affinity binding site. Mei H; Wang K; McKee S; Wang X; Waldner JL; Pielak GJ; Durham B; Millett F Biochemistry; 1996 Dec; 35(49):15800-6. PubMed ID: 8961943 [TBL] [Abstract][Full Text] [Related]
15. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast. Tryon E; Kuby SA Enzyme; 1984; 31(4):197-208. PubMed ID: 6432526 [TBL] [Abstract][Full Text] [Related]
16. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants. Cénas N; Anusevicius Z; Bironaité D; Bachmanova GI; Archakov AI; Ollinger K Arch Biochem Biophys; 1994 Dec; 315(2):400-6. PubMed ID: 7986084 [TBL] [Abstract][Full Text] [Related]
17. Phanerochaete chrysosporium NADPH-cytochrome P450 reductase kinetic mechanism. Warrilow AG; Lamb DC; Kelly DE; Kelly SL Biochem Biophys Res Commun; 2002 Nov; 299(2):189-95. PubMed ID: 12437968 [TBL] [Abstract][Full Text] [Related]
18. Characterization of hydride transfer to flavin adenine dinucleotide in neuronal nitric oxide synthase reductase domain: geometric relationship between the nicotinamide and isoalloxazine rings. Miller RT; Hinck AP Arch Biochem Biophys; 2001 Nov; 395(1):129-35. PubMed ID: 11673874 [TBL] [Abstract][Full Text] [Related]
19. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase. Meints CE; Simtchouk S; Wolthers KR FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101 [TBL] [Abstract][Full Text] [Related]
20. The reaction between cytochrome c1 and cytochrome c. König BW; Wilms J; Van Gelder BF Biochim Biophys Acta; 1981 Jun; 636(1):9-16. PubMed ID: 6269595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]