BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7548144)

  • 1. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye.
    Schwarz G; Arbuzova A
    Biochim Biophys Acta; 1995 Oct; 1239(1):51-7. PubMed ID: 7548144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles.
    Rex S; Schwarz G
    Biochemistry; 1998 Feb; 37(8):2336-45. PubMed ID: 9485380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis.
    Arbuzova A; Schwarz G
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):139-52. PubMed ID: 10446298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of melittin induced pore formation in the membrane of lipid vesicles.
    Schwarz G; Zong RT; Popescu T
    Biochim Biophys Acta; 1992 Sep; 1110(1):97-104. PubMed ID: 1390840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore formation induced by the peptide melittin in different lipid vesicle membranes.
    Rex S
    Biophys Chem; 1996 Jan; 58(1-2):75-85. PubMed ID: 8679920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-liposome association. A critical examination with mastoparan-X.
    Hellmann N; Schwarz G
    Biochim Biophys Acta; 1998 Mar; 1369(2):267-77. PubMed ID: 9518645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible surface aggregation in pore formation by pardaxin.
    Rapaport D; Peled R; Nir S; Shai Y
    Biophys J; 1996 Jun; 70(6):2502-12. PubMed ID: 8744290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore formation and translocation of melittin.
    Matsuzaki K; Yoneyama S; Miyajima K
    Biophys J; 1997 Aug; 73(2):831-8. PubMed ID: 9251799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transbilayer transport of ions and lipids coupled with mastoparan X translocation.
    Matsuzaki K; Yoneyama S; Murase O; Miyajima K
    Biochemistry; 1996 Jun; 35(25):8450-6. PubMed ID: 8679603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis.
    Park S; Jackman JA; Cho NJ
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110338. PubMed ID: 31301580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of pore-mediated release of marker molecules from liposomes or cells.
    Schwarz G; Robert CH
    Biophys Chem; 1992 Apr; 42(3):291-6. PubMed ID: 1581523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase A(2)-catalyzed membrane leakage studied by immobilized liposome chromatography with online fluorescent detection.
    Liu XY; Nakamura C; Yang Q; Miyake J
    Anal Biochem; 2001 Jun; 293(2):251-7. PubMed ID: 11399040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indolicidin action on membrane permeability: carrier mechanism versus pore formation.
    Rokitskaya TI; Kolodkin NI; Kotova EA; Antonenko YN
    Biochim Biophys Acta; 2011 Jan; 1808(1):91-7. PubMed ID: 20851098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton permeation into single vesicles occurs via a sequential two-step mechanism and is heterogeneous.
    Kuyper CL; Kuo JS; Mutch SA; Chiu DT
    J Am Chem Soc; 2006 Mar; 128(10):3233-40. PubMed ID: 16522104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on the control release of microencapsulated dye in lecithin liposomes. II.
    Baptista AL; Coutinho PJ; Real Oliveira ME; Gomes JI
    J Liposome Res; 2003 May; 13(2):123-30. PubMed ID: 12855107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of wasp venom mastoparan with biomembranes.
    Katsu T; Kuroko M; Morikawa T; Sanchika K; Yamanaka H; Shinoda S; Fujita Y
    Biochim Biophys Acta; 1990 Aug; 1027(2):185-90. PubMed ID: 2204429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane Pore Formation by Peptides Studied by Fluorescence Techniques.
    Tatulian SA; Kandel N
    Methods Mol Biol; 2019; 2003():449-464. PubMed ID: 31218629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peculiar behaviour of rabbit thymocytes in interaction with liposomes of different compositions shown by fluorescence polarization studies, lipid analysis, and uptake of vesicle-entrapped carboxyfluorescein.
    Roozemond RC; Urli DC
    Biochim Biophys Acta; 1982 Aug; 689(3):499-512. PubMed ID: 6982071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.