These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7548168)

  • 1. Isolation and biochemical characterization of highly purified Escherichia coli molecular chaperone Cpn60 (GroEL) by affinity chromatography and urea-induced monomerization.
    Blennow A; Surin BP; Ehring H; McLennan NF; Spangfort MD
    Biochim Biophys Acta; 1995 Sep; 1252(1):69-78. PubMed ID: 7548168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of E. coli chaperonin groEL from β-galactosidase without denaturation.
    Molugu SK; Li J; Bernal RA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():93-9. PubMed ID: 26590880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protein isolated from Escherichia coli, identified as GroEL, reacts with anti-beta spectrin antibodies.
    Czogalla A; Kwolek P; Hryniewicz-Jankowska A; Nietubyć M; Leluk J; Sikorski AF
    Arch Biochem Biophys; 2003 Jul; 415(1):94-100. PubMed ID: 12801517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of chaperonins 60 and 10 from Methylobacillus glycogenes.
    Kawata Y; Doi K; Omoto H; Mizobata T; Nagai J
    Cell Stress Chaperones; 1998 Sep; 3(3):200-7. PubMed ID: 9764760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings.
    Jones S; Wallington EJ; George R; Lund PA
    J Mol Biol; 1998 Oct; 282(4):789-800. PubMed ID: 9743627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disassembly/reassembly strategy for the production of highly pure GroEL, a tetradecameric supramolecular machine, suitable for quantitative NMR, EPR and mutational studies.
    Wälti MA; Clore GM
    Protein Expr Purif; 2018 Feb; 142():8-15. PubMed ID: 28951283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8.
    Amada K; Yohda M; Odaka M; Endo I; Ishii N; Taguchi H; Yoshida M
    J Biochem; 1995 Aug; 118(2):347-54. PubMed ID: 8543569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual structure in urea-denatured chaperonin GroEL.
    Gorovits BM; Seale JW; Horowitz PM
    Biochemistry; 1995 Oct; 34(42):13928-33. PubMed ID: 7577988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aromatic amino acid content of the bacterial chaperone protein groEL (cpn60). Evidence for the presence of a single tryptophan.
    Price NC; Kelly SM; Wood S; auf der Mauer A
    FEBS Lett; 1991 Nov; 292(1-2):9-12. PubMed ID: 1683633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable chaperonin from Clostridium thermocellum.
    Cross SJ; Ciruela A; Poomputsa K; Romaniec MP; Freedman RB
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):615-22. PubMed ID: 8687408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for specific and non-covalent binding of lipids to natural and recombinant Mycobacterium bovis BCG hsp60 proteins, and to the Escherichia coli homologue GroEL.
    De Bruyn J; Soetaert K; Buyssens P; Calonne I; De Coene JL; Gallet X; Brasseur R; Wattiez R; Falmagne P; Montrozier H; Lanéelle MA; Daffé M
    Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1513-1524. PubMed ID: 10878116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
    Chaudhuri TK; Gupta P
    Cell Stress Chaperones; 2005; 10(1):24-36. PubMed ID: 15832945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroEL binds artificial proteins with random sequences.
    Aoki K; Motojima F; Taguchi H; Yomo T; Yoshida M
    J Biol Chem; 2000 May; 275(18):13755-8. PubMed ID: 10788496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Monomeric form of the molecular chaperone GroEL: structure, stability, and oligomerization].
    Surin AK; Kotova NV; Marchenkova SIu; Marchenkov VV; Semisotnov GV
    Bioorg Khim; 1999 May; 25(5):358-64. PubMed ID: 10495893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of chaperonin-60 from Paracoccus denitrificans.
    Fukami TA; Yohda M; Taguchi H; Yoshida M; Miki K
    J Mol Biol; 2001 Sep; 312(3):501-9. PubMed ID: 11563912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.