BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 7548233)

  • 1. Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes.
    Chen M; Mason RP; Tulenko TN
    Biochim Biophys Acta; 1995 Oct; 1272(2):101-12. PubMed ID: 7548233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis.
    Tulenko TN; Chen M; Mason PE; Mason RP
    J Lipid Res; 1998 May; 39(5):947-56. PubMed ID: 9610760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structural and functional changes in erythrocyte membranes in experimental atherosclerosis].
    Torkhovskaia TI; Artemova LG; Khodzhakuliev BG; Rudenko TS; Polesskiĭ VA
    Biull Eksp Biol Med; 1980 Jun; 89(6):675-8. PubMed ID: 6249422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells.
    Gleason MM; Medow MS; Tulenko TN
    Circ Res; 1991 Jul; 69(1):216-27. PubMed ID: 2054935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease in myocardial Na(+)-K(+)-ATPase activity and ouabain binding sites in hypercholesterolemic rabbits.
    Chen WJ; Lin-Shiau SY; Huang HC; Lee YT
    Basic Res Cardiol; 1997 Feb; 92(1):1-7. PubMed ID: 9062646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes.
    Timsina R; Trossi-Torres G; O'Dell M; Khadka NK; Mainali L
    Exp Eye Res; 2021 May; 206():108544. PubMed ID: 33744256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered Na+-K+-ATPase, cell Na+ and lipid profiles in canine arterial wall with chronic cigarette smoking.
    Tulenko TN; Rabinowitz JL; Cox RH; Santamore WP
    Int J Biochem; 1988; 20(3):285-9. PubMed ID: 2833412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes.
    Mainali L; Pasenkiewicz-Gierula M; Subczynski WK
    Curr Eye Res; 2020 Feb; 45(2):162-172. PubMed ID: 31462080
    [No Abstract]   [Full Text] [Related]  

  • 9. Differences in lipid characteristics of undifferentiated and enterocytic-differentiated HT29 human colonic cells.
    Reynier M; Sari H; d'Anglebermes M; Kye EA; Pasero L
    Cancer Res; 1991 Feb; 51(4):1270-7. PubMed ID: 1671756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells.
    Dawaliby R; Trubbia C; Delporte C; Noyon C; Ruysschaert JM; Van Antwerpen P; Govaerts C
    J Biol Chem; 2016 Feb; 291(7):3658-67. PubMed ID: 26663081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics.
    Cornelius F
    Biochemistry; 2001 Jul; 40(30):8842-51. PubMed ID: 11467945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dietary cholesterol on biliary cholesterol content and bile flow in the hypothyroid rat.
    Field FJ; Albright E; Mathur SN
    Gastroenterology; 1986 Aug; 91(2):297-304. PubMed ID: 3013710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic adenosine triphosphatase activities in plasma membranes of CCl4-cirrhotic rats. Its modulation by changes in cholesterol/phospholipid ratios.
    Yahuaca P; Amaya A; Rojkind M; Mourelle M
    Lab Invest; 1985 Nov; 53(5):541-5. PubMed ID: 2997543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine.
    Williams EE; Cooper JA; Stillwell W; Jenski LJ
    Mol Membr Biol; 2000; 17(3):157-64. PubMed ID: 11128974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid composition of liver plasma membranes from rats intoxicated with carbon tetrachloride.
    Camacho J; Rubalcava B
    Biochim Biophys Acta; 1984 Sep; 776(1):97-104. PubMed ID: 6477907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate phosphohydrolase activity in guinea pig liver microsomes is influenced by phosphatidylcholine. Interaction with cholesterol-enriched membranes.
    Gumbhir K; Sanyal SN; Minocha R; Wali A; Majumdar S
    Biochim Biophys Acta; 1989 May; 981(1):77-84. PubMed ID: 2541791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylcholine-rich acceptors, but not native HDL or its apolipoproteins, mobilize cholesterol from cholesterol-rich insoluble components of human atherosclerotic plaques.
    Chung BH; Franklin F; Liang P; Doran S; Cho BH; Curcio CA
    Biochim Biophys Acta; 2005 Mar; 1733(1):76-89. PubMed ID: 15749058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na,K-ATPase reconstituted in liposomes: effects of lipid composition on hydrolytic activity and enzyme orientation.
    de Lima Santos H; Lopes ML; Maggio B; Ciancaglini P
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):239-48. PubMed ID: 15748819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific volume and compressibility of bilayer lipid membranes with incorporated Na,K-ATPase.
    Hianik T; Rybár P; Krivánek R; Petríková M; Roudna M; Apell HJ
    Gen Physiol Biophys; 2011 Jun; 30(2):145-53. PubMed ID: 21613669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid composition of low-density lysosomal membrane fraction prepared from atheromatous aorta of cholesterol-fed rabbits.
    Amanuma-Muto K; Kanaseki T; Imanaka T; Ohkuma S; Takano T
    Biochem Int; 1983 Jul; 7(1):107-14. PubMed ID: 6679333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.