These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7548435)

  • 1. Resin embedding for quantitative immunoelectron microscopy. A comparative computerized image analysis.
    Eneström S; Kniola B
    Biotech Histochem; 1995 May; 70(3):135-46. PubMed ID: 7548435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryofixation combined with physical dehydration for quantitative immunoelectron cytochemistry.
    Eneström S; Kniola B
    Biotech Histochem; 1994 Mar; 69(2):89-98. PubMed ID: 8204771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short fixation-shock freezing and freeze-drying versus chemical fixation and dehydration: computer assisted image analysis of morphological variables and immunogold labeling density on pituitary secretory granules.
    Eneström S; Kniola B
    Biotech Histochem; 1992 Sep; 67(5):268-87. PubMed ID: 1300149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoelectron microscopic localization of sarcoplasmic reticulum proteins in cryofixed, freeze-dried, and low temperature-embedded tissue.
    Jorgensen AO; McGuffee LJ
    J Histochem Cytochem; 1987 Jul; 35(7):723-32. PubMed ID: 2953782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reappraisal of potassium permanganate oxidation applied to Lowicryl K4M embedded tissues processed by high pressure freezing/freeze substitution, with special reference to differential staining of the zymogen granules of rat gastric chief cells.
    Sawaguchi A; Ide S; Kawano J; Nagaike R; Oinuma T; Tojo H; Okamoto M; Suganuma T
    Arch Histol Cytol; 1999 Dec; 62(5):447-58. PubMed ID: 10678574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pituitary secretory granule topography: influence of different electron microscopic preparation procedures on the surface of Epon sections.
    Eneström S; Kniola B
    Biotech Histochem; 1991; 66(5):246-56. PubMed ID: 1790240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of microwave technology to the processing and immunolabeling of plastic-embedded and cryosections.
    Rangell LK; Keller GA
    J Histochem Cytochem; 2000 Aug; 48(8):1153-9. PubMed ID: 10898808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques in immuno-electron microscopy. I. Cryosubstitution.
    Schaumburg-Lever G; Fehrenbacher B; Möller H; Nau P
    J Cutan Pathol; 1994 Aug; 21(4):330-8. PubMed ID: 7798389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epon resin infiltration and immunogold labelling of pituitary secretory granules after cryofixation versus chemical fixation.
    Eneström S; Kniola B
    Biotech Histochem; 1992 Mar; 67(2):100-5. PubMed ID: 1599972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryosubstitution dehydration of aldehyde-fixed tissue: a favorable approach to quantitative immunocytochemistry.
    Oprins A; Geuze HJ; Slot JW
    J Histochem Cytochem; 1994 Apr; 42(4):497-503. PubMed ID: 8126376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of osmicated tissues for Lowicryl K4M embedding.
    Nanci A; Mazariegos M; Fortin M
    J Histochem Cytochem; 1992 Jun; 40(6):869-74. PubMed ID: 1588031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of using acrylic resins in post-embedding ultrastructural immunolabelling of human neutrophil granule proteins.
    Mutasa HC
    Histochem J; 1989 May; 21(5):249-58. PubMed ID: 2476415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic immunoelectron microscopy in surgical pathology: assessment of various tissue fixation and processing protocols.
    Mount SL; Taatjes DJ; von Turkovich M; Tindle BH; Trainer TD
    Ultrastruct Pathol; 1993; 17(5):547-56. PubMed ID: 7504845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid method for the preparation of yeast for immunoelectron microscopy using Lowicryl HM-20.
    Anderson WH; Thompson EW; Zwizinski CW
    J Electron Microsc Tech; 1991 Jun; 18(2):172-5. PubMed ID: 1886000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and morphological aspects of Unicryl versus Lowicryl K4M embedding in immunoelectron microscopic studies.
    Bogers JJ; Nibbeling HA; Deelder AM; van Marck EA
    J Histochem Cytochem; 1996 Jan; 44(1):43-8. PubMed ID: 8543781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved immunogold labeling of epoxy sections by the use of propylene oxide as additional agent in dehydration, infiltration and embedding.
    Brorson SH
    Micron; 1996 Oct; 27(5):345-53. PubMed ID: 9008875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy.
    Altman LG; Schneider BG; Papermaster DS
    J Histochem Cytochem; 1984 Nov; 32(11):1217-23. PubMed ID: 6436366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An antigen retrieval method using an alkaline solution allows immunoelectron microscopic identification of secretory granules in conventional epoxy-embedded tissue sections.
    Yano S; Kashima K; Daa T; Urabe S; Tsuji K; Nakayama I; Yokoyama S
    J Histochem Cytochem; 2003 Feb; 51(2):199-204. PubMed ID: 12533528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody penetration into LR-White sections.
    Brorson SH; Roos N; Skjørten F
    Micron; 1994; 25(5):453-60. PubMed ID: 7850351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The post-embedding method for immunoelectron microscopy of mammalian tissues: a standardized procedure based on heat-induced antigen retrieval.
    Yamashita S
    Methods Mol Biol; 2010; 657():237-48. PubMed ID: 20602221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.