These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7548707)

  • 1. Semi-parametric estimation in failure time mixture models.
    Taylor JM
    Biometrics; 1995 Sep; 51(3):899-907. PubMed ID: 7548707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semi-parametric accelerated failure time cure model.
    Li CS; Taylor JM
    Stat Med; 2002 Nov; 21(21):3235-47. PubMed ID: 12375301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.
    Ng SK; McLachlan GJ
    Stat Med; 2003 Apr; 22(7):1097-111. PubMed ID: 12652556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new estimation method for the semiparametric accelerated failure time mixture cure model.
    Zhang J; Peng Y
    Stat Med; 2007 Jul; 26(16):3157-71. PubMed ID: 17094075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixture models for continuous data in dose-response studies when some animals are unaffected by treatment.
    Boos DD; Brownie C
    Biometrics; 1991 Dec; 47(4):1489-504. PubMed ID: 1786327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regression survival model for testing the proportional hazards hypothesis.
    Quantin C; Moreau T; Asselain B; Maccario J; Lellouch J
    Biometrics; 1996 Sep; 52(3):874-85. PubMed ID: 8924576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric bootstrap for testing model fitting in the proportional hazards framework: an application to the survival analysis of Bruna dels Pirineus beef calves.
    Casellas J; Tarrés J; Piedrafita J; Varona L
    J Anim Sci; 2006 Oct; 84(10):2609-16. PubMed ID: 16971560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Markov chain Monte Carlo EM algorithm for analyzing interval-censored data under the Cox proportional hazards model.
    Goggins WB; Finkelstein DM; Schoenfeld DA; Zaslavsky AM
    Biometrics; 1998 Dec; 54(4):1498-507. PubMed ID: 9883548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression analysis of multivariate grouped survival data.
    Guo SW; Lin DY
    Biometrics; 1994 Sep; 50(3):632-9. PubMed ID: 7981390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A partially parametric estimator of survival in the presence of randomly censored data.
    Klein JP; Lee SC; Moeschberger ML
    Biometrics; 1990 Sep; 46(3):795-811. PubMed ID: 2242415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival estimation using splines.
    Whittemore AS; Keller JB
    Biometrics; 1986 Sep; 42(3):495-506. PubMed ID: 3471280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-parametric regression models for cost-effectiveness analysis: improving the efficiency of estimation from censored data.
    Pullenayegum EM; Willan AR
    Stat Med; 2007 Jul; 26(17):3274-99. PubMed ID: 17309112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A joint frailty model for survival and gap times between recurrent events.
    Huang X; Liu L
    Biometrics; 2007 Jun; 63(2):389-97. PubMed ID: 17688491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SAS macro for parametric and semiparametric mixture cure models.
    Corbière F; Joly P
    Comput Methods Programs Biomed; 2007 Feb; 85(2):173-80. PubMed ID: 17157948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the response rate in the presence of measurement error.
    Qu Y; Kulkarni PM; Sanger TM
    Stat Med; 2007 Jan; 26(1):197-211. PubMed ID: 16526011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian approach to a logistic regression model with incomplete information.
    Choi T; Schervish MJ; Schmitt KA; Small MJ
    Biometrics; 2008 Jun; 64(2):424-30. PubMed ID: 17764482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regression analysis of doubly censored failure time data using the additive hazards model.
    Sun L; Kim YJ; Sun J
    Biometrics; 2004 Sep; 60(3):637-43. PubMed ID: 15339285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-stage procedure for survival studies with surrogate endpoints.
    Flandre P; O'Quigley J
    Biometrics; 1995 Sep; 51(3):969-76. PubMed ID: 7548712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-parametric estimation and model checking procedures for marginal gap time distributions for recurrent events.
    Kvist K; Gerster M; Andersen PK; Kessing LV
    Stat Med; 2007 Dec; 26(30):5394-410. PubMed ID: 17994608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiparametric models for cumulative incidence functions.
    Bryant J; Dignam JJ
    Biometrics; 2004 Mar; 60(1):182-90. PubMed ID: 15032788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.